FEUERLABS

A beacon language for

concurrency programming
by Ulf Wiger, Co-Founder, Feuerlabs

Erlang/Linux Timeline

Products w/ Erlang&Unix

Open Source

CSLab Erlang

Erl
VAX/Unix - Linux at ///

Linux Y RHL

L|n.ux user base [
triples in 1998

Mid-90s—Early Days

PC Hardware and UNIX not yet in embedded systems
Many off-the-shelf boards had the old BIOS bug

\We were told UNIX
unsuitable for
99.999% systems

Oipmt TR

Keyboard not found

; Press F1 t .
And Erlang was weird peo e 10 coutime. B to evter B

and slow!

http://loldaddy.com/pics/1122

Now-Portability & Multicore

CPU Architecture War revived
Parallelism made explicit!
Saves power in devices

Gives speed on servers

Erlang thrives on multicore

“You have a great name.
He must kill your name before
he kills you.” (Juba, The Gladiator)

“Robert Metcalf [the inventor of Ethernet]
says that if something comes along to
replace Ethernet, it will be called “Ethernet”,
so therefore Ethernet will never die. Unix has

already undergone several such transformations.
(Ken Thompson, from “The Durability of Unix”)

Unix is immortal

http://www.faqs.org/docs/artu/ch01s02.html
http://upload.wikimedia.org/wikipedia/ca/0/09/Gladiator_ver2.jpg

FEUERLABS

Erlang—Favoured by the Gods?

“Erlang is going to be a very important language.
It could be the next Java” (Ralph Johnson)

“Erlang is a beacon language for concurrency programming”
(Simon Peyton Jones)

“If Erlang doesn't become the next great language,
it will at least receive honourable mention

When the [multi-core] revolution comes, you will be better

prepared if you know Erlang”
(Kresten Krab Thorup, GOTO CPH Keynote 2011)

http://www.cincomsmalltalk.com/userblogs/ralph/blogView?showComments=true&entry=3364027251

FEUERLABS

What Erlang Was Made For

FEUERLABS

Scalability through message passing...

iven

FEUERLABS
|

ine-dr

Mach

o :: ‘m.__ u.
, ..__:r « : ; ;

11
| \ f Ea _h § _ |

oN
=
i =
=
—

Automatic Sw

FEUERLABS

Stored Program Control - Bugs and all!!!

FEUERLABS

Digital switching, modular SW design

Telephony-Realm Problems

Soft Real-Time These aspects are

High Availability reflected in the

In-service upgrades design of Erlang

Self-healing systems (fault-tolerance)
Scalability
Device Management

Complexity

Erlang, Intuitively

http://www.youtube.com/watch?v=xrIjfIjssLE

Erlang, Intuitively

One concurrent process

for each naturally ‘
concurrent (3)
activity -

-
S /"{“
\ !
)
AV
% o)

FEUERLABS

Woah! Pthread Hell?!!

Most people have a hard enough time understanding tasks, never mind
"chopped up tasks" or threads.

The first problem while programming is answering the question: "What can
be threaded in my app?". That, in itself, can be very laborious (see section on

"What kinds of things should be threaded/multitasked?").

Another problem is locking. All the nightmares about sharing, locking,
deadlock, race conditions, etc. come vividly alive in threads. Processes don't
usually have to deal with this, since most shared data is passed through
pipes. Now, threads can share file handles, pipes, variables, signals, etc.

Trying to test and duplicate error conditions can cause more gray hair than a
wayward child.

http://linas.org/linux/threads-faq.html#ThreadingHeuristics
http://linas.org/linux/threads-faq.html

Erlang is Different

Concurrency Done Right™
No locking, no shared memory (mostly)

Extremely lightweight processes

Maps intuitively to the inherent concurrency
of the problem space

FEUERLABS

Client-server in Erlang
~

Client monitors server

Client sends a request

(Blocks while waiting)

Server sends reply

FEUERLABS

Client-server in Erlang

call(S, Request, Timeout) ->
Mref = monitor(process, S),

S ! {call, Mref, Request},
awaiting_reply(Mref, Timeout).

awaiting_reply(Mref, Timeout) ->
receive
{Mref, Reply} ->
. Reply;
Client and Server 0NN Mref. . Reason} -
may even be on error(Reason)

. . after Timeout ->
different machines error(timeout)

end.

" W ¥ Robust systems can be

built using layering

Program for the correct case

FEUERLABS

Handling sockets in Erlang
@ .\ ‘Static process opens listen socket

‘ Spawns an acceptor process
‘ Acceptor receives incoming

Acks back to socket owner

New acceptor is spawned

Replies sent directly to socket

FEUERLABS

Middle-man Processes

spawn_link(PidA, PidB) -> await_negotiation(State) ->
spawn_link(fun() -> receive
loop(#state{a_pid= PidA, {From,
b _pid = PidB}) {simple_xml,
[{"offer", Attrs, Content}]}} ->
HisOffer =
inspect_offer(Attrs, Content),

Offer = calc offer(HisOffer, State),
From ! {self(), Offer};

Practical because of
loop(#state{a_pid = PidA, b_pid = PidB} = State) -> Iight‘WEight concurrency

receive
{PidA, MsgBin} when is_binary(MsgBin) -> .
{simple_xml, } = Msg = vccXml:simple xml(MsgBin), Normahzes messages
PidB ! {self(), Msg},
loop(State);

{Pid8, {simplexml, _} = Msg} -> Main process can pattern-

Bin = vccXml:to XML(Msg),

PidA | {self(), Bin}, match on ImMesSsages

loop(State)

Keeps the main logic clear

Three state machines described as one

Implies a single-threaded event loop

Introduces accidental complexity

FEUERLABS

Soft Upgrade

Atomic per-module, per-process code switch

Plus high-level support for system upgrade

9> setup:reload_app(gproc).
[gproc vsn “©.2.12-28-gc68b9b4™] soft upgrade from “9.2.7"
{ok,[]}

7> os:putenv(“ERL_LIBS", "/Users/uwiger/FL/git").
true

8> setup:find_app(gproc).
[{"©.2.7","/Users/uwiger/ETC/git/gproc/ebin”},
{"9.2.12-20-gc60b9b4", " /Users/uwiger/FL/git/gproc/ebin™}]

9> setup:reload_app(gproc).
[gproc vsn "©.2.12-20-gc60b9b4”] soft upgrade from “8.2.7"
{ok,[]}

From the Tar Pit

Complexity is the single major difficulty in the
successful development of large-scale software
systems.

Following Brooks we distinguish accidental from

essential difficulty, but disagree with his premise
that most complexity remaining in contemporary
systems is essential.

http://shaffner.us/cs/papers/tarpit.pdf

Complex State Machines
ONE DOES NOT

SIMPLY
o

WBITE AN EVENT
ll v 100P"

What makes FSMs Complex?

Multi-way messaging

History-dependent states

Failures

Tetris Management

The age-old classic has
coined a new time
management method

The idea: learn how to
keep the pile small

Tetris Management

Used in a derogatory sense fetris

at a major software
development project

As in "reactive management
without a plan”

Basically, don’t let your
project become a tetris game

2007 Emperor cJ

FEUERLABS

A different kind of puzzle

What if your problem more resembles this?

Would you attack this problem with a tetris
approach?

FEUERLABS

Connected Health

NFC & Fingerprint Scan Data

Scan requests & remote maintenance

FEUERLABS

Peer-to-Peer Car Sharing

Waypoint & Telematics Status Data

WiFi/
3C/4C

——— - e~ -

’h.§-~_.-_~-- | - -

|

Remote door unlock, kill switch,
remote configuration

