faming effects
fhe next big challenge

Simon Peyton Jones
Microsoft Research

c.f. static

S Uimm ary types 1995-

2005

1, Over the next 10 years, the software
pattiegreund will be

the control of effects

2. To succeed, we must shift programming
Perspective

from
Imperative by default

to
Functional by default

Any Spectrum Pure

effiect (no effects)

C, C++, Java, C#, VB Excel, Haskell

X:=Inl

X = X*X :HJ.F-'J.

X = X + In2*In2 .,
M4 4 ¥ M| Sheetl | Sheet2 [[T
FEH (OO F 0086 =)

Commands, control flow Expressions, data flow

= Do this, then do that = No notion of sequence
= “X” Is the name of a cell = “A2” Is the name of a
that has different values (single) value

at different times

Imperative

C, C++, Java, C#, VB

l InN1 3
X:=Inl

X = X*X In2 4

X = X + In2*In2

Commands, control flow

= Do this, then do that

= “X” Is the name of a cell
that has different values
at different times

Imperative

C, C++, Java, C#, VB

In1 3
X :=1Inl
X = X*X IN2 4
X =X+ In2*In2

X 3

Commands, control flow

= Do this, then do that

= “X” Is the name of a cell
that has different values
at different times

Imperative

C, C++, Java, C#, VB

In1 3
X :=1Inl
X = X*X IN2 4
X =X+ In2*In2

X 9

Commands, control flow

= Do this, then do that

= “X” Is the name of a cell
that has different values
at different times

Imperative

C, C++, Java, C#, VB

In1 3
X :=1Inl
X = X*X IN2 4
X =X+ In2*In2

X 25

Commands, control flow

= Do this, then do that

= “X” Is the name of a cell
that has different values
at different times

EFunctional

Excel, Haskell

A1l A2 1 |3
A3 2 [=A1*Al
Bl IR Sheetl

B2

A2 = A1*A1l Expressions, data flow

B2 = B1*B1l = No notion of sequence
A3 = A2+B2 = “A2” Is the name of a
(single) value

A BIgger example

00k-atom model
of amorphous silicon,
generated using F#
Thanks: Jon Harrop

N-shell of atom A
Atoms accessible in N hops (but no fewer) from A

A BIgger example

1-shell of atom A

N-shell of atom A
Atoms accessible in N hops (but no fewer) from A

A BIgger example

2-shell of atom A

N-shell of atom A
Atoms accessible in N hops (but no fewer) from A

A BIgger example

To find the N-shell of A

*Find the (N-1) shell of A

*Union the 1-shells of each of those atoms
*Delete the (N-2) shell and (N-1) shell of A

Suppose N=4

Sl

o
" \./ k e

o

A’s 3-shell

A BIgger example

To find the N-shell of A

*Find the (N-1) shell of A

Union the 1-shells of each of those atoms
*Delete the (N-2) shell and (N-1) shell of A

.\
[

/
o A’s 3-shell

/

[]
0/ \ O ® 1-shell of 3-shell atoms
./ \.

N

A BIgger example

To find the N-shell of A

*Find the (N-1) shell of A

*Union the 1-shells of each of those atoms
Delete the (N-2) shell and (N-1) shell of A

\

0
/ \ ® A’s 2-shell and 3-shell
/
\ A’s 4-shell

(-) :» Seta->Seta->Seta

A BIGOEN EXAMDIE K

To find the N-shell of A neighbours :: Graph -> Atom -> Set Atom
*Find the (N-1) shell of A

Find all the neighbours of those atoms

*Delete the (N-2) shell and (N-1) shell of A

nShell :: Graph -> Int -> Atom -> Set Atom

nShell g 0 a = unitSet a

nShell g 1 a = neighbours g a

nShell g n a = (mapUnion (neighbours g) s1) — sl —s2
where

sl = nShell g (n-1) a
s2 = nShell g (n-2) a

=) .. Seta->Seta->Seta
mapUnion :: (a-> Setb)->Seta-> Setb

A bigger example

neighbours :: Graph -> Atom -> Set Atom

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a nShellgna

nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) —s1 —s2

where
sl =nShellg (n-1) a -
s2 =nShell g (n-2) a

<mapUnion neighbours>

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a
B Ut. . nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) — s1 —s2
where

sl =nShell g (n-1) a
s2 = nShell g (n-2) a

nShell n needs
nShell (n-1)
nShell (n-2)

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a
B Ut. . nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) — s1 —s2
where

sl =nShell g (n-1) a
s2 = nShell g (n-2) a

nShell n needs
‘nShell (n-1) which needs
e NShell (n-2) (e ——————

* nShell (n-3) Duplicates!
'nShell (n-2) which needs (= —————
* nShell (n-3)

* nShell (n-4)

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a
B Ut. . nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) — s1 —s2
where

sl =nShell g (n-1) a
s2 = nShell g (n-2) a

BUT, the two calls to (nShell g (n-2) a)
must yield the same result

And so we can safely share them @
 Memo function, or
e Return a pair of results

Same Inputs
“Purity”

el “Referential transparency”
same out pu s “No side effects”

PUrty pays: understanding

Xl'msert(Y) What does this
X2.delete(Y) program do?

= \Would it matter Iff we swapped the order of
these two calls?

= \What Ifi X1=X27
= | wonder what else X1.insert does?

LLots ofi heroic work on static analysis, but
hampered by unnecessary effects

PUrty pays: Verification Sieconditon

SR Void Insert(int index, object value)
requires (0 <= index && index <= Count)

ensures Forall{ int i in O:index; old(this[i]) == this]i] }

[}

= Jhe pre and post-conditions are Post-
written In... a functional language

= Also: object invariants
But: Invariants temporarily broken
Hence: "expose” statements

condition

PUrty pays: testing

AN 0] (6] o [=IUAARI BSISIESA nropUnion :: Set a -> Bool
SUS=S propuUnions = unionss ==

I ani imperative or OO language, you must

= set up the state of the object, and the external
state It reads or writes

= make the call

= [nspect the state of the object, and the external
state

= perhaps copy part of the object or global state,
SO that you can use it in the postcondition

PUity pays: maintenamnce

= Jhe type of a function tells you a LOT
about it reverse :: [a] -> [a]

= | arge-scale data representation changes

In a multi-100kloc code base can be done
reliably:

O change the representation
o compile until no type errors
O WOrks

PUKtY pays: perfermance

Execution model Is not so close to machine

0 Hence, bigger jolb for compller, execution may be
slewer

But: algerithm Is often more important than raw
efficiency

And: purity supports radical optimisations

0 nShell runs 100x faster in F# than C++
Why? More sharing of parts of sets.

0 SQL, XQuery guery optimisers
Real-life example: Smoke Vector Graphics

library: 200kloc C++ became 50kloc OCaml, and
ran Sx faster

PUrty pays: parallelism
Pure programs are “naturally parallel”

No mutable state Al Bl
means no locks, 3
no race hazards Bl B2

Results totally unaffected by parallelism
(1 processor or zillions)

Examples
0 Google’'s map/reduce

0 SQL on clusters
0 PLINGQ

PUrty pays: parallelism

Can | run this LINQ query in parallel?

Int index = 0O;
List<Customer> top10 = (from c in customers

where index++ < 10
select c).ToList();

= Race hazard because of the side effect In
the ‘where'’ clause

= |May be concealed inside calls

= Parallel query is correct/reliable only if the
expressions in the guery are 100% pure

e central challenge:
[aming effects

Arbitrary effects
Plan A
(incremental)
Plan B
(radical)

[Dangerous Safe

Useful

Useless

Plan A: burld on what we have

Atbitrary effects -

Default = Any effect
Erlang Plan = Addl restrictions

= No mutable variables

= [imited effects
0 send/receive messages,

O Input/output,
0O exceptions
= Rich pure sub-language: lists, tuples, higher
order functions, comprehensions, pattern
matching...

Plan A: burld on what we have

Arbitrary effects - @
Default = Any effect

F# Plan = Add restrictions

= A .NET language; hence unlimited effects

= But, a rich pure sub-language: lists, tuples,
nigher order functions, comprehensions, pattern
matching...

Plan A: burld on what we have

Arbitrary effects ‘ @
Default = Any effect

Plan = Add restrictions

How do we know

BUT (for sure) that a
function is pure?

Plan A answer: by convention

Plan B: purity: by default

IHaskell
= A rich pure language: lists,

tuples; higher order functions, @

comprehensions, pattern
matching...

= NO side effects at all Plan B

(radical)

Hmm... ultimately, the program
must have SOME effect!

Plan B: purity’ by default

Haskell
= \We learned hoew to do I/O using
So-called “monads”

= Pure function:

toUpper :: String -> String

. > - Plan B
= Sjde-effecting function (r§dnical)

getUserlnput :: String -> IO String

= The type tells (nearly) all

Plan B: purity’ by default

IHaskell
= Jhe type tells (nearly) all

= A single program Is a mixture of @

pure and effect-ful code, kept

type system

Plan B
(radical)

nermetically separated by the I

e centrallchallenge

Useiul Arbitrary effects
Plan A

(incremental)

Cross-fertilisati\ Plan B

(eg STM) (radical)

Useless

[Dangerous Safe

Effects matter: transactions

= Multiple threads with shared, mutable state
= Brand leader: locks and condition variables
= New kid on the block: transactional memory

atomic { withdraw(A, 4)
, deposit (B, 4) }

= Optimistic concurrency:
0 run code without taking locks, logging changes

0 check at end whether transaction has seen a consistent view of
memory

0 Ifiso, commit effects to shared memory
0 If not, abort and re-run transaction

Effects matter: transactions

= VIl enly' make sense If the transacted code
0 Does no input eutput
0 Mutates only transacted variables

= SO effects form a spectrum

Any effect ¢ N\ ficcts

Mutate Tvars only

= Monads classify the effects
transferMoney :: Acc -> Acc -> Int -> STM ()

Can only
read/write Tvars
No I/O!

getUserinput :: String -> 10 String

Can do
arbitrary 1/0

My claims

= Viainstream languages are hamstrung by
gratuitous (le unnecessary) effects

T=0;for (I=0; I<KN; 1++) {T =T +1}
Effects are part of the fabric of computation

= Euture software will be effect-free by
default,
o With controlled effects where necessary
o Statically checked by the type system

And the future Is here...

= Eunctional pregramming has fascinated
academics for decades

= But professional-developer interest in
functional programming has sky-rocketed
In the last 5 years.

Suddenly, FP Is cool, not geeky:.

V@St researnchilanguages

2
&2 1,000,000
O
15
© 10,000
o

(0[0)

The quick death

Geeks

Suceessiul research languages

2
&2 1,000,000
O
15
© 10,000
o

(0[0)

The slow death

Geeks

C++, Java, Pefl; Ruby.

2 Threshold of immortalit
L 1,000,000
e
b5
g 10,000
The regrettable
100 absence of death

Geeks

H aS ke I I “Learning Haskell is a great way of

training yourself to think functionally
S0 you are ready to take full

“I'm already looking at coding advantage of C# 3.0 when it comes

Q problems and my mental out”
(b perspective is now shifting blog Apr 2007
c 1,000,000 back and forth between e)
..% purely OO and more FP
= styled solutions”
% (blog Mar 2007)
Pl 10,000
al

100 '
i The second life?
4
3
) 1

1990 1995 2000 2005 2010

Lots of ether great examples

Erlang: widely respected and admired as
a shining example of functional
programming applied to. an Important
doemain

=4 new being commercialised by
Microsoft

O©Caml, Scala, Scheme: academic
languages being widely used in industry

C#: explicitly adopting functional ideas
(e.g. LINQ)

Shaiply. rsing activity

56 day rolling average of ticketsfday

GHC bug tracker
1999-2007

Dpene

unique nicks in #haskell for the years ending 2001-2008

Haskell IRC channel

nick count

2001-2007
2001 2002 2003 2004 2005 2006 2007 2008

Jan 20 Austin Functional Programming Austin
Feb 9 FringeDC Washington DC
Feb11 PDXFunc Portland
Feb 12 Fun in the afternoon London
Feb 13 BayFP San Francisco
Feb 16 St-Petersburg Haskell User Group Saint-Petersburg
Feb 19 NYFP Network New York

Feb 20 Seattle FP Group Seattle

CUFP

Commercial Users
of Functional Programming
2004-2007

Commercial Users of Functional
Programming

Speakers describing applications in:
banking, smart cards, telecoms, data
parallel, terrorism response training,
machine learning, network services,
hardware design, communications
security, cross-domain security

I B Participants

2004 2005 2006

CUFP 2008 is part of the a new

Functional Programming Developer Conference
(tutorials, tools, recruitment, etc)
Victoria, British Columbia, Sept 2008

Same meeting: workshops on Erlang, ML, Haskell, Scheme.

SuUmmany.

= [he languaeges and teols of functional

programming are being used to make
moeney. fast

= Jhe ldeas of functional programming are
rapidly becoming mainstream

= |n particular, the Big Deal for
programming In the next decade Is the
control of effects, and functional
programming Is the place to look for
solutions.

Quotes from the front line

“‘Learning Haskell' has completely reversed my feeling that static
typing Is an old outdatedidea.”

“Changing| the type of a function in Pythen will' lead to strange
funtime emors. But when | modify a Haskell program, | already
know! it willlwerk once it compiles.”

“Our chat system was implemented by 3 other groups (two Java,
one C++). Haskell implementation is more stable, provides more
features, and has about 70% less code.”

“I'm no expert, but | got an order off magnitude improvement in code
Size and 2 orders of magnitude development improvement in
develepment time”

“My Pythoni solution was 50 lines. My Haskell solution was 14
lines, and | was quite pleased. Your Haskell solution was 5.”

“C Isn't hard;; programming in C Is hard. On the other hand, Haskell
IS hard, but pregramming in Haskell is easy.”

	Taming effects�The next big challenge
	Summary
	Any �effect
	Imperative
	Imperative
	Imperative
	Imperative
	Functional
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	But...
	But...
	But...
	Purity pays: understanding
	Purity pays: verification
	Purity pays: testing
	Purity pays: maintenance
	Purity pays: performance
	Purity pays: parallelism
	Purity pays: parallelism
	The central challenge: �taming effects
	Plan A: build on what we have
	Plan A: build on what we have
	Plan A: build on what we have
	Plan B: purity by default
	Plan B: purity by default
	Plan B: purity by default
	The central challenge
	Effects matter: transactions
	Effects matter: transactions
	My claims
	And the future is here...
	Most research languages
	Successful research languages
	C++, Java, Perl, Ruby
	Haskell
	Lots of other great examples
	Sharply rising activity
	CUFP
	Summary
	Quotes from the front line

