
Taming effectsTaming effects
The next big challengeThe next big challenge

Simon Peyton JonesSimon Peyton Jones
Microsoft ResearchMicrosoft Research

SummarySummary
1.1. Over the next 10 years, the software Over the next 10 years, the software

battleground will bebattleground will be

2.2. To succeed, we must shift programming To succeed, we must shift programming
perspectiveperspective

the control of effects

from
Imperative by default

to
Functional by default

c.f. static
types 1995-

2005

Any Any
effecteffect

X := In1
X := X*X
X := X + In2*In2

C, C++, Java, C#, VB Excel, Haskell

Do this, then do that
“X” is the name of a cell
that has different values
at different times

No notion of sequence
“A2” is the name of a
(single) value

Commands, control flow Expressions, data flow

Pure Pure
(no effects)(no effects)

Spectrum

X := In1
X := X*X
X := X + In2*In2

C, C++, Java, C#, VB

Do this, then do that
“X” is the name of a cell
that has different values
at different times

Commands, control flow

3In1

4In2

X

ImperativeImperative

X := In1
X := X*X
X := X + In2*3

C, C++, Java, C#, VB

Do this, then do that
“X” is the name of a cell
that has different values
at different times

Commands, control flow

3In1

4In2

3X

X := In1
X := X*X
X := X + In2*In2

ImperativeImperative

X := In1
X := X*X
X := X + In2*3

C, C++, Java, C#, VB

Do this, then do that
“X” is the name of a cell
that has different values
at different times

Commands, control flow

3In1

4In2

9X

X := In1
X := X*X
X := X + In2*In2

ImperativeImperative

X := In1
X := X*X
X := X + In2*3

C, C++, Java, C#, VB

Do this, then do that
“X” is the name of a cell
that has different values
at different times

Commands, control flow

3In1

4In2

25X

X := In1
X := X*X
X := X + In2*In2

ImperativeImperative

Excel, Haskell

No notion of sequence
“A2” is the name of a
(single) value

Expressions, data flowA2 = A1*A1
B2 = B1*B1
A3 = A2+B2

*

*
+

A1

B1 B2

A2
A3

FunctionalFunctional

A bigger exampleA bigger example

N-shell of atom A
Atoms accessible in N hops (but no fewer) from A

A
50-shell of 100k-atom model

of amorphous silicon,
generated using F#
Thanks: Jon Harrop

A bigger exampleA bigger example

N-shell of atom A
Atoms accessible in N hops (but no fewer) from A

A

1-shell of atom A

A bigger exampleA bigger example

N-shell of atom A
Atoms accessible in N hops (but no fewer) from A

A

2-shell of atom A

A bigger exampleA bigger example
To find the N-shell of A
•Find the (N-1) shell of A
•Union the 1-shells of each of those atoms
•Delete the (N-2) shell and (N-1) shell of A

Suppose N=4

A’s 3-shell

A bigger exampleA bigger example
To find the N-shell of A
•Find the (N-1) shell of A
•Union the 1-shells of each of those atoms
•Delete the (N-2) shell and (N-1) shell of A

Suppose N=4

A’s 3-shell

1-shell of 3-shell atoms

A bigger exampleA bigger example
To find the N-shell of A
•Find the (N-1) shell of A
•Union the 1-shells of each of those atoms
•Delete the (N-2) shell and (N-1) shell of A

Suppose N=4

A’s 4-shell

A’s 2-shell and 3-shell

A bigger exampleA bigger example
To find the N-shell of A
•Find the (N-1) shell of A
•Find all the neighbours of those atoms
•Delete the (N-2) shell and (N-1) shell of A

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a
nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) – s1 – s2

where
s1 = nShell g (n-1) a
s2 = nShell g (n-2) a

unitSet :: a -> Set a
(–) :: Set a -> Set a -> Set a

neighbours :: Graph -> Atom -> Set Atom

(–) :: Set a -> Set a -> Set a
mapUnion :: (a -> Set b) -> Set a -> Set b

neighbours :: Graph -> Atom -> Set Atom

A bigger exampleA bigger example

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a
nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) – s1 – s2

where
s1 = nShell g (n-1) a
s2 = nShell g (n-2) a

(–) :: Set a -> Set a -> Set a
mapUnion :: (a -> Set b) -> Set a -> Set b

neighbours :: Graph -> Atom -> Set Atom

nShell g (n-1)
a

nShell g (n-2)
a

mapUnion neighbours

–

–

s1 s2

nShell g n a

nShell n needs
•nShell (n-1)
•nShell (n-2)

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a
nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) – s1 – s2

where
s1 = nShell g (n-1) a
s2 = nShell g (n-2) a

But...But...

nShell n needs
•nShell (n-1) which needs

• nShell (n-2)
• nShell (n-3)

•nShell (n-2) which needs
• nShell (n-3)
• nShell (n-4)

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a
nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) – s1 – s2

where
s1 = nShell g (n-1) a
s2 = nShell g (n-2) a

But...But...

Duplicates!

nShell :: Graph -> Int -> Atom -> Set Atom
nShell g 0 a = unitSet a
nShell g 1 a = neighbours g a
nShell g n a = (mapUnion (neighbours g) s1) – s1 – s2

where
s1 = nShell g (n-1) a
s2 = nShell g (n-2) a

But...But...

BUT, the two calls to (nShell g (n-2) a)
must yield the same result

And so we can safely share them
• Memo function, or
• Return a pair of results

Same inputs
means

same outputs
“Purity”
“Referential transparency”
“No side effects”

nShell

g n a

Purity pays: understandingPurity pays: understanding

Would it matter if we swapped the order of Would it matter if we swapped the order of
these two calls? these two calls?
What if X1=X2?What if X1=X2?
I wonder what I wonder what elseelse X1.insert does?X1.insert does?

Lots of heroic work on static analysis, but Lots of heroic work on static analysis, but
hampered by unnecessary effectshampered by unnecessary effects

X1.insert(Y)
X2.delete(Y)

What does this
program do?

Purity pays: verificationPurity pays: verification
void Insert(int index, object value)
requires (0 <= index && index <= Count)
ensures Forall{ int i in 0:index; old(this[i]) == this[i] }

{ ... }

Pre-condition

The pre and postThe pre and post--conditions areconditions are
written in... a functional languagewritten in... a functional language
Also: object invariantsAlso: object invariants
But: invariants temporarily brokenBut: invariants temporarily broken
Hence: Hence: ““exposeexpose”” statementsstatements

Spec#

Post-
condition

Purity pays: testingPurity pays: testing

In an imperative or OO language, you mustIn an imperative or OO language, you must
set up the state of the object, and the external set up the state of the object, and the external
state it reads or writesstate it reads or writes
make the callmake the call
inspect the state of the object, and the external inspect the state of the object, and the external
statestate
perhaps copy part of the object or global state, perhaps copy part of the object or global state,
so that you can use it in the so that you can use it in the postconditionpostcondition

propUnion :: Set a -> Bool
propUnion s = union s s == s

A property of sets
s ∪

s = s

Purity pays: maintenancePurity pays: maintenance

The The typetype of a function tells you a LOT of a function tells you a LOT
about itabout it

LargeLarge--scale data representation changes scale data representation changes
in a multiin a multi--100kloc code base can be done 100kloc code base can be done
reliably:reliably:
oo change the representationchange the representation
oo compile until no type errorscompile until no type errors
oo worksworks

reverse :: [a] -> [a]

Purity pays: performancePurity pays: performance
Execution model is not so close to machineExecution model is not so close to machine

oo Hence, bigger job for compiler, execution may be Hence, bigger job for compiler, execution may be
slowerslower

But: algorithm is often more important than raw But: algorithm is often more important than raw
efficiencyefficiency
And: purity supports radical optimisationsAnd: purity supports radical optimisations

oo nShellnShell runs 100x faster in F# than C++runs 100x faster in F# than C++
Why? More sharing of parts of sets.Why? More sharing of parts of sets.

oo SQL, SQL, XQueryXQuery query optimisersquery optimisers

RealReal--life example: Smoke Vector Graphics life example: Smoke Vector Graphics
library: 200kloc C++ became 50kloc library: 200kloc C++ became 50kloc OCamlOCaml, and , and
ran 5x fasterran 5x faster

Purity pays: parallelismPurity pays: parallelism
Pure programs are Pure programs are ““naturally parallelnaturally parallel””
No mutable stateNo mutable state
means no locks,means no locks,
no race hazardsno race hazards
Results totally unaffected by parallelismResults totally unaffected by parallelism
(1 processor or zillions)(1 processor or zillions)
ExamplesExamples
oo GoogleGoogle’’s map/reduces map/reduce
oo SQL on clustersSQL on clusters
oo PLINQPLINQ

*

*
+

A1

B1 B2

B1
A3

Purity pays: parallelismPurity pays: parallelism

Can I run this LINQ query in parallel?Can I run this LINQ query in parallel?

Race hazard because of the side effect in Race hazard because of the side effect in
the the ‘‘wherewhere’’ clauseclause
May be concealed inside callsMay be concealed inside calls
Parallel query is correct/reliable only if the Parallel query is correct/reliable only if the
expressions in the query are 100% pureexpressions in the query are 100% pure

int index = 0;
List<Customer> top10 = (from c in customers

where index++ < 10
select c).ToList();

The central challenge: The central challenge:
taming effectstaming effects

Arbitrary effects

No effects

UsefulUseful

UselessUseless

DangerousDangerous SafeSafe

Nirvana
Plan A
(incremental)

Plan B
(radical)

Plan A: build on what we havePlan A: build on what we have

ErlangErlang
No mutable variablesNo mutable variables
Limited effectsLimited effects

oo send/receive messages, send/receive messages,
oo input/output, input/output,
oo exceptionsexceptions

Rich pure subRich pure sub--language: lists, language: lists, tuplestuples, higher , higher
order functions, comprehensions, pattern order functions, comprehensions, pattern
matching...matching...

Arbitrary effects

Default = Any effectDefault = Any effect
Plan = Add restrictionsPlan = Add restrictions

Nirvana

Plan A: build on what we havePlan A: build on what we have

F#F#
A .NET language; hence unlimited effectsA .NET language; hence unlimited effects
But, a rich pure subBut, a rich pure sub--language: lists, language: lists, tuplestuples, ,
higher order functions, comprehensions, pattern higher order functions, comprehensions, pattern
matching...matching...

Arbitrary effects

Default = Any effectDefault = Any effect
Plan = Add restrictionsPlan = Add restrictions

Nirvana

Plan A: build on what we havePlan A: build on what we have

BUTBUT

Arbitrary effects

Default = Any effectDefault = Any effect
Plan = Add restrictionsPlan = Add restrictions

Nirvana

How do we know
(for sure) that a

function is pure?

Plan A answer: by conventionPlan A answer: by convention

Plan B: purity by defaultPlan B: purity by default

No effects

Nirvana

Plan B
(radical)

HaskellHaskell
A rich pure language: lists, A rich pure language: lists,
tuplestuples, higher order functions, , higher order functions,
comprehensions, pattern comprehensions, pattern
matching...matching...
NO side effects at allNO side effects at all

Hmm... ultimately, the program Hmm... ultimately, the program
must have SOME effect!must have SOME effect!

Plan B: purity by defaultPlan B: purity by default

No effects

Nirvana

Plan B
(radical)

HaskellHaskell
We learned how to do I/O using We learned how to do I/O using
soso--called called ““monadsmonads””
Pure function:Pure function:

SideSide--effecting functioneffecting function

The type tells (nearly) allThe type tells (nearly) all

toUpper :: String -> String

getUserInput :: String -> IO String

Plan B: purity by defaultPlan B: purity by default

No effects

Nirvana

Plan B
(radical)

HaskellHaskell
The type tells (nearly) allThe type tells (nearly) all
A single program is a mixture of A single program is a mixture of
pure and effectpure and effect--fulful code, kept code, kept
hermetically separated by the hermetically separated by the
type systemtype system

Pure (most)

I/O

The central challengeThe central challenge

Arbitrary effects

No effects

UsefulUseful

UselessUseless

DangerousDangerous SafeSafe

Nirvana
Plan A
(incremental)

Plan B
(radical)

Cross-fertilisation
(eg STM)

Effects matter: transactionsEffects matter: transactions
Multiple threads with shared, mutable stateMultiple threads with shared, mutable state
Brand leader: locks and condition variablesBrand leader: locks and condition variables
New kid on the block: transactional memoryNew kid on the block: transactional memory

Optimistic concurrency:Optimistic concurrency:
oo run code without taking locks, logging changesrun code without taking locks, logging changes
oo check at end whether transaction has seen a consistent view of check at end whether transaction has seen a consistent view of

memorymemory
oo if so, commit effects to shared memoryif so, commit effects to shared memory
oo if not, abort and reif not, abort and re--run transactionrun transaction

atomic { withdraw(A, 4)
; deposit (B, 4) }

Effects matter: transactionsEffects matter: transactions
TM only make sense if the transacted codeTM only make sense if the transacted code

oo Does no input outputDoes no input output
oo Mutates only transacted variablesMutates only transacted variables

So effects form a So effects form a spectrumspectrum

Monads classify the effectsMonads classify the effects

Any effect No effects
Mutate Tvars only

getUserInput :: String -> IO String

transferMoney :: Acc -> Acc -> Int -> STM ()

Can do
arbitrary I/O

Can only
read/write Tvars

No I/O!

My claimsMy claims
Mainstream languages are hamstrung by Mainstream languages are hamstrung by
gratuitous (gratuitous (ieie unnecessary) effectsunnecessary) effects

EffectsEffects are part of the fabric of computationare part of the fabric of computation

Future software will be effectFuture software will be effect--free by free by
default, default,
oo With controlled effects where necessaryWith controlled effects where necessary
oo Statically checked by the type systemStatically checked by the type system

T = 0; for (i=0; i<N; i++) { T = T + i }

And the future is here... And the future is here...

Functional programming has fascinated Functional programming has fascinated
academics for decadesacademics for decades
But professionalBut professional--developer interest in developer interest in
functional programming has skyfunctional programming has sky--rocketed rocketed
in the last 5 years. in the last 5 years.

Suddenly, FP is cool, not geeky.Suddenly, FP is cool, not geeky.

Most research languagesMost research languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The quick death

G
ee

ks
P

ra
ct

iti
on

er
s

Successful research languagesSuccessful research languages

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The slow death

G
ee

ks
P

ra
ct

iti
on

er
s

C++, Java, Perl, RubyC++, Java, Perl, Ruby

1yr 5yr 10yr 15yr

1,000,000

1

100

10,000

The regrettable
absence of death

G
ee

ks
P

ra
ct

iti
on

er
s Threshold of immortality

HaskellHaskell

1,000,000

1

100

10,000

The second life?

G
ee

ks
P

ra
ct

iti
on

er
s

“Learning Haskell is a great way of
training yourself to think functionally

so you are ready to take full
advantage of C# 3.0 when it comes

out”
(blog Apr 2007)

“I'm already looking at coding
problems and my mental

perspective is now shifting
back and forth between
purely OO and more FP

styled solutions”
(blog Mar 2007)

1990 1995 2000 2005 2010

Lots of other great examplesLots of other great examples
ErlangErlang: widely respected and admired as : widely respected and admired as
a shining example of functional a shining example of functional
programming applied to an important programming applied to an important
domaindomain
F#F#: now being commercialised by : now being commercialised by
MicrosoftMicrosoft
OCamlOCaml, , ScalaScala, Scheme, Scheme: academic : academic
languages being widely used in industry languages being widely used in industry
C#C#: explicitly adopting functional ideas : explicitly adopting functional ideas
(e.g. LINQ)(e.g. LINQ)

Sharply rising activitySharply rising activity
GHC bug tracker

1999-2007

Haskell IRC channel
2001-2007

Jan 20 Austin Functional Programming Austin
Feb 9 FringeDC Washington DC
Feb 11 PDXFunc Portland
Feb 12 Fun in the afternoon London
Feb 13 BayFP San Francisco
Feb 16 St-Petersburg Haskell User Group Saint-Petersburg
Feb 19 NYFP Network New York
Feb 20 Seattle FP Group Seattle

CUFPCUFP
Commercial Users

of Functional Programming
2004-2007

CUFP 2008 is part of the a new
Functional Programming Developer Conference

(tutorials, tools, recruitment, etc)
Victoria, British Columbia, Sept 2008

Same meeting: workshops on Erlang, ML, Haskell, Scheme.

Speakers describing applications in:
banking, smart cards, telecoms, data
parallel, terrorism response training,
machine learning, network services,
hardware design, communications

security, cross-domain security

SummarySummary
The The languages and toolslanguages and tools of functional of functional
programming are being used to make programming are being used to make
money fastmoney fast
The The ideas ideas of functional programming are of functional programming are
rapidly becoming mainstreamrapidly becoming mainstream
In particular, the Big Deal for In particular, the Big Deal for
programming in the next decade is the programming in the next decade is the
control of effectscontrol of effects, and functional , and functional
programming is the place to look for programming is the place to look for
solutions.solutions.

Quotes from the front lineQuotes from the front line
““Learning Haskell has completely Learning Haskell has completely reversed my feeling that static reversed my feeling that static
typing is an old outdated idea.typing is an old outdated idea.””
““Changing the type of a function in Python will lead to strange Changing the type of a function in Python will lead to strange
runtime errors. But when I modify a Haskell program, I already runtime errors. But when I modify a Haskell program, I already
know it will work once it compiles.know it will work once it compiles.””
““Our chat system was implemented by 3 other groups (two Java, Our chat system was implemented by 3 other groups (two Java,
one C++). Haskell implementation is more stable, provides more one C++). Haskell implementation is more stable, provides more
features, and has about 70% less code.features, and has about 70% less code.””
““II’’m no expert, but I got m no expert, but I got an order of magnitude improvement in code an order of magnitude improvement in code
size and 2 orders of size and 2 orders of magnitude development improvement in magnitude development improvement in
development timedevelopment time””
““My Python solution was 50 lines. My Haskell solution was 14 My Python solution was 50 lines. My Haskell solution was 14
lines, and I was quite pleased. Your Haskell solution was 5.lines, and I was quite pleased. Your Haskell solution was 5.””
"C isn't hard; programming in C is hard. On the other hand, Hask"C isn't hard; programming in C is hard. On the other hand, Haskell ell
is hard, but programming in Haskell is easy.is hard, but programming in Haskell is easy.””

	Taming effects�The next big challenge
	Summary
	Any �effect
	Imperative
	Imperative
	Imperative
	Imperative
	Functional
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	A bigger example
	But...
	But...
	But...
	Purity pays: understanding
	Purity pays: verification
	Purity pays: testing
	Purity pays: maintenance
	Purity pays: performance
	Purity pays: parallelism
	Purity pays: parallelism
	The central challenge: �taming effects
	Plan A: build on what we have
	Plan A: build on what we have
	Plan A: build on what we have
	Plan B: purity by default
	Plan B: purity by default
	Plan B: purity by default
	The central challenge
	Effects matter: transactions
	Effects matter: transactions
	My claims
	And the future is here...
	Most research languages
	Successful research languages
	C++, Java, Perl, Ruby
	Haskell
	Lots of other great examples
	Sharply rising activity
	CUFP
	Summary
	Quotes from the front line

