
Composing contracts
An adventure in financial

engineering

Simon Peyton Jones and Julian Seward,

Microsoft Research

and

Jean Marc Eber, LexiFi Technologies

The big picture

Financial engineering
Programming

language design and
implementation

Jean Marc

Simon
and
Julian

The big picture

Financial engineering
Programming

language design and
implementation

Jean Marc

Simon
and
Julian

Swaps, caps, options,
european, bermudan,

straddle, floors, swaptions,
swallows, spreads, futures

Combinator
library

Denotational
semantics

Operational
semantics

What we want to do

Precise
description of a

contract

Scheduling
for back
office

Valuation
and hedging

Legal and
documentation

etc….

What we want to do

Precise
description of a

pudding

Compute
sugar

content

Estimate
time to
make

Instructions to
make it

etc….

What we want to do

Precise
description of a

pudding

Compute
sugar content

Estimate time
to make

Instructions to
make it

Bad approach

List all puddings (trifle, lemon upside
down pudding, Dutch apple cake, Christmas
pudding)

For each pudding, write down
sugar content, time to make,
instructions etc

What we want to do

Precise
description of a

pudding

Compute
sugar content

Estimate time
to make

Instructions to
make it

Good approach

Define a small set of “pudding
combinators”

Define all puddings in terms of
these combinators

Calculate sugar content from
these combinators too

Creamy fruit salad

On top of

Take

Whipped

1 pint Cream

Mixture

Take

Chopped

3 Apples

Take

6 Oranges

Optional

Combinators combine
small puddings into
bigger puddings

Trees can be written as text
On top of

Take

Whipped

1 pint Cream

Mixture

Take

Chopped

3 Apples

Take

6 Oranges

Optional

salad = onTopOf topping main_part
topping = whipped (take pint cream)
main_part = mixture apple_part orange_part
apple_part = chopped (take 3 apple)
orange_part = optional (take 6 oranges)

Notation:
parent child1 child2

function arg1 arg2

Slogan: a domain-specific language for describing puddings

Building a simple contract

c1 :: Contract
c1 = zcb (date “1 Jan 2010”) 100 Pounds

zcb :: Date -> Float -> Currency -> Contract
-- Zero coupon bond

“Receive £100 on 1 Jan 2010”

Combinators will appear in blue boxes

Combing contracts

c1,c2,c3 :: Contract
c1 = zcb (date “1 Jan 2010”) 100 Pounds
c2 = zcb (date “1 Jan 2011”) 100 Pounds

c3 = and c1 c2

and :: Contract -> Contract -> Contract
-- Both c1 and c2

and

zcb t1 100 Pounds zcb t2 100 Pounds

c1 c2

c3

Inverting a contract

and

zcb t1 100 Pounds zcb t2 100 Pounds

give :: Contract -> Contract
-- Invert role of parties

c4 = c1 `and` give c2

give

c2

c4

c1

and is like addition

give is like negation

Backquotes for
infix notation

New combinators from old

andGive :: Contract -> Contract -> Contract
andGive u1 u2 = u1 `and` give u2

andGive is a new combinator, defined in terms of
simpler combinators
To the “user”, andGive is no different to a primitive,
built-in combinator

This is the key to extensibility: users can write their
own libraries of combinators to extend the
built-in ones

Defining zcb

Indeed, zcb is not primitive:

zcb :: Date -> Float -> Currency -> Contract
zcb t f k = at t (scaleK f (one k))

one :: Currency -> Contract
-- Receive one unit of currency immediately

at :: Date -> Contract -> Contract
-- Acquire the contract at specified date

scaleK :: Float -> Contract -> Contract
-- Scale contract by specified factor

Acquisition dates

one :: Currency -> Contract
-- Receive one unit of currency immediately

at :: Date -> Contract -> Contract
-- Acquire the underlying contract at specified date

If you acquire the contract (one k), you receive one
unit of currency k immediately
If you acquire the contract (at t u) at time s<t,
then you acquire the contract u at the (later) time t.

If you acquire (at t u) later than t, you get
nothing.

Observables

Pay me $1000 * (the number of inches of snow - 10) on 1 Jan 2002

c :: Contract
c = at “1 Jan 2002” (scale scale_factor (one Dollar))

scale_factor :: Obs Float
scale_factor = 1000 * (snow - 10)

scale :: Obs Float -> Contract -> Contract
-- Scale the contract by the value of the observable
-- at the moment of acquisition

Observables

An observable is an objectively-measurable, but
perhaps time-varying quantity, or a value derived
from such measurements

snow :: Obs Float

date :: Obs Date

const :: a -> Obs a

(*), (-) :: Obs Float -> Obs Float -> Obs Float

(>), (>=) :: Obs a -> Obs a -> Obs Bool

scaleK k c = scale (const k) c

Acquisition triggers

Acquisition can be triggered by a boolean observable

when :: Obs Bool -> Contract -> Contract
-- If you acquire (when o c), you acquire c at the
-- first moment when o subsequently becomes True

c :: Contract
c = when late_snow (one GBP)

late_snow :: Obs Bool
late_snow = date > const “1 Apr 2003” &&

snow > 100

at t c = when (date == const t) c

Choice

An option gives the flexibility to

Choose which contract to acquire (or, as a
special case, whether to acquire a contract)

Choose when to acquire a contract
(exercising the option = acquiring the
underlying contract)

Choose which

or :: Contract -> Contract -> Contract
-- Acquire your choice of either c1 or c2

immediately

zero :: Contract
-- A worthless contract

european :: Date -> Contract -> Contract
european t u = at t (u `or` zero)

European option: at a particular date you may choose
to acquire an “underlying” contract, or to decline

Reminder…

Remember that the underlying contract is arbitrary

c5 :: Contract
c5 = european t1 (european t2 c1)

This is already beyond what current systems can handle

Choose when: American options

anytime :: Obs Bool -> Contract -> Contract
-- Acquire the underlying contract at
-- any time the observable is True

The option to acquire 10 Microsoft shares, for $100,
anytime between t1 and t2 years from now

golden_handcuff = anytime (date >= t1 && date <= t2)
shares

shares = zero `or` (scaleK -100 (one Dollar) `and`
scaleK 10 (one MSShare))

anytime:
Choose when

MS shares are
a “currency”

or: Choose
whether

Summary so far

Only 10 combinators (after many, many design iterations)

Each combinator does one thing

Can be combined to describe a rich variety of contracts

Surprisingly elegant

But what does it all mean?

We need an absolutely
precise specification of what
the combinators mean: their
semantics

And we would like to do
something useful with our
(now precisely described)
contracts

One very useful thing is to
compute a contract’s value

Use denotational semantics

The denotation of a program is a
mathematical value that embodies what the
program “means”

Two programs are equivalent if they have the
same denotation

A denotational semantics should be
compositional: the denotation of (P1 + P2) is
gotten by combining somehow the denotations
of P1 and P2

Processing puddings

Wanted: S(P), the sugar content of pudding P

S(onTopOf p1 p2) = S(p1) + S(p2)

S(whipped p) = S(p)

S(take q i) = q * S(i)

…etc…

When we define a new recipe, we can calculate its
sugar content with no further work

Only if we add new combinators or new ingredients do
we need to enhance S

Processing puddings

Wanted: S(P), the sugar content of pudding P

S(onTopOf p1 p2) = S(p1) + S(p2)

S(whipped p) = S(p)

S(take q i) = q * S(i)

…etc…

S is compositional
To compute S for a compound pudding,

Compute S for the sub-puddings

Combine the results in some combinator-dependent way

What is the denotation of a contract?

Main idea: the denotation of a contract is a
random process that models the value of

acquiring the contract at that moment.

ℇ

: Contract -> RandomProcess

RandomProcess = Time -> RandomVariable

Uncertainty
increases
with time

Time

Compositional valuation

ℇ(c1 `and` c2) = ℇ

(c1) + ℇ

(c2)

ℇ(c1 `or` c2) = max(ℇ(c1), ℇ(c2))

ℇ(give c) = - ℇ

(c)

ℇ(when o c) = discount(ℇ(o), ℇ(c))

ℇ(anytime o c) = snell(ℇ(o), ℇ(c))

…etc…

This is a major payoff! Deal with the 10-ish
combinators, and we are done with valuation!

Add random
processes
point-wise

Standard financial
operators

Reasoning about equivalence

Using this semantics we can prove (for example) that
anytime o (anytime o c) = anytime o c

Depends on algebra of random
processes (snell, discount, etc).
Bring on the mathematicians!

A compiler for contracts

Contract

Take semantics

Random process
Transform using
algebraic laws

Code generation

Valuation program

Valuation

There are many numerical methods to compute
discrete approximations to random processes (tons
and tons and tons and tons and tons and tons and
tons and tons and tons and tons of existing work)

Contract
Model of world

(e.g. interest rates,
snow fall)

Valuation engine

One possible evaluation model: BDT

contract C

5%

6%

4%

zcb 3 100 Pounds

interest rate model M

100

100

Value tree ℇ(C)

Valuation
engine 95

100

100

0 1 2 3

Space and time

Obvious implementation computes the value tree for
each sub-contract

But these value trees can get BIG
And often, parts of them are not needed

at t

tsimple
discounting

Haskell to the rescue

“Lazy evaluation” means that

data structures are computed incrementally, as they
are needed (so the trees never exist in memory all at
once)

parts that are never needed are never computed

Slogan

We think of the tree as a first class value “all at once”

but it is only materialised “piecemeal”

An operational semantics

As time goes on, a contract evolves
e.g. zcb t1 n k `and` zcb t2 n k

Want to value your current contract “book”

So we want to say formally how a contract,
or group of contract evolves with time,
and how it interacts with its
environment (e.g. emit cash, make choice)

Work on the operational semantics of
programming languages is directly relevant
(e.g. bisimulation)

A compiler for contracts

Contract

Take semantics

Random process

Code generation

Valuation program

Evolve using operational
semantics

Beyond financial contracts

Section 1. The attorney shall provide, on a non-
exclusive basis, legal services up to (n) hours per
month, and furthermore provide services in excess of
(n) hours upon agreement.

Section 2. In consideration hereof, the company shall
pay a MDCC 16 monthly fee of (amount in dollars)
before the 8th day of the following month and (rate)
per hour for any services in excess of (n) hours 40
days after the receipt of an invoice.

Section 3. This contract is valid 1/1-12/31, 2008.

[Henglein FLACOS 2007]

Again: a domain specific language

Summary

A small set of built-in combinators: named and tamed

A user-extensible library defines the zoo of contracts

Compositional denotational semantics, leads directly
to modular valuation algorithms

Risk Magazine Software Product of the Year Prize

Jean-Marc has started a company, LexiFi, to
commercialise the ideas. Paying customers, typesafe
.NET interoperation, sophisticated pricing models etc.

Routine for us, radical stuff
for financial engineers

Summary

A small set of built-in combinators: named and tamed

A user-extensible library defines the zoo of contracts

Compositional denotational semantics, leads directly
to modular valuation algorithms

Risk Magazine Software Product of the Year Prize

Jean-Marc has started a company, LexiFi, to
commercialise the ideas

Beats higher order logic hands
down for party conversation

	Composing contracts�An adventure in financial engineering
	The big picture
	The big picture
	Slide Number 4
	What we want to do
	What we want to do
	What we want to do
	What we want to do
	Creamy fruit salad
	Trees can be written as text
	Building a simple contract
	Combing contracts
	Inverting a contract
	New combinators from old
	Defining zcb
	Acquisition dates
	Observables
	Observables
	Acquisition triggers
	Choice
	Choose which
	Reminder…
	Choose when: American options
	Summary so far
	But what does it all mean?
	Use denotational semantics
	Processing puddings
	Processing puddings
	What is the denotation of a contract?
	Compositional valuation
	Reasoning about equivalence
	A compiler for contracts
	Valuation
	One possible evaluation model: BDT
	Space and time
	Haskell to the rescue
	An operational semantics
	A compiler for contracts
	Beyond financial contracts
	Again: a domain specific language
	Summary
	Summary

