
High Assurance Software

John Launchbury
CEO, Galois Inc
john@galois.com

© 2008 Galois, Inc.

A Personal View

• A history of Galois
• Some technology examples
• Looking forward

2

© 2008 Galois, Inc.

In the beginning…

Have Functional Language,
Can program

• 1999/2000
• Service focus
• Customers

– Government
– Local industry

3

© 2008 Galois, Inc.

Making a Business out of FP

• Build cool things that people should want
– Find sales people to sell it

• Sales is always the business
– Technology is a support department for sales

4

Marketing identifies the right
product for Technology to build
so that Sales will be able to sell

© 2008 Galois, Inc.

Automated Test Equipment

Customer’s
chip-specific
testing code

Chip
Tester

• ATE vendor needs to provide backwards
compatibility

• Translation task
– Code cleaning to upgrade language
– OS migration
– API discovery & modification

• Problem: testing code contains IP
• Requirement: the code look-and-feel

to remain unchanged

5

© 2008 Galois, Inc.

Partial Change List

• Type changes (explicate CONN
equivalences)

• Introduction & initialization of global
and /or local variables

• Type changes/initialization of struct
members

• Aggregate initialization (where array
is given all its values at once; need
to translate to explicit bit setting)

• Removal of redundant checks (no
need to check for end of array; done
inside API)

• Flag deprecated API elements
• Replacing malloc/free with API

create/destroy
• API function name/type changes

• Insert missing headers (#includes)
• Change/add prototypes to match

definition
• Add prototype declaration instead of

implicit forward declaration
• Remove syntactic clutter
• Remove/change ill-behaved

declarations (e.g., static struct,
static char *)

• Make type casts explicit (i.e. double
as case scrutinee; cast to int)

• Change now illegal identifier names
(forced by ANSI changes)

• Change return statements for
functions that now return void

• Make implicit variable declarations
explicit (i.e., to int)

6

© 2008 Galois, Inc.

API Discovery

• Old machine
– Test programs use arrays as connection lists

b1 = *c; /* set b1 to current bit */
b2 = *(c++); /* set b2 to next bit, move focus */
(c + 1) = b3; / set next bit to b3 */

• New machine
– Requires use of API for building connection lists

b1 = conn_getbit(c, c_current);
b2 = conn_getbit(c, c_current++);
conn_setbit(c, c_current + 1, b3);

7

© 2008 Galois, Inc.

/* 1. BEFORE */

debug_printf("**** DSP error in test %s,
 occurred on bit # %d -->",
 test_name (NULL),
 (*plist & ~LASTBIT) + 1);

if ((log_ptr->vector >= f_scan_st[u])
 && (log_ptr->vector < f_scan_sp[u]))
 {
 if ((log_ptr->fail_bits[0]
 == *even_ram)
 || (log_ptr->fail_bits[1]
 == *even_ram))
 {
 ficm_write(even_ram, log_ptr->vector,
 log_ptr->vector,
 "H", UNSPECIFIED, UNSPECIFIED);
 rep_str[2*u][log_ptr->vector - f_scan_st[u]] = '1';
 }

8

© 2008 Galois, Inc.

/* 1. AFTER */

debug_printf("**** DSP error in test %s,
 occurred on bit # %d -->",
 test_name (NULL),
 conn_getbit(plist, plist_local_counter) + 1);

if ((log_ptr->vector >= f_scan_st[u])
 && (log_ptr->vector < f_scan_sp[u]))
 {
 if ((log_ptr->fail_bits[0]
 == conn_getbit(even_ram, even_ram_global_counter))
 || (log_ptr->fail_bits[1]
 == conn_getbit(even_ram, even_ram_global_counter)))
 {
 ficm_write(even_ram, log_ptr->vector,
 log_ptr->vector,
 "H", UNSPECIFIED, UNSPECIFIED);
 rep_str[2*u][log_ptr->vector - f_scan_st[u]] = '1';
 }

9

© 2008 Galois, Inc.

/* 2. BEFORE */

for(pbl = 0; pbl < S_parConnPointer->nrbitl;
 pbl++)
{
 close_mba_relays
 (S_parConnPointer->bitl[pbl]);
 open_io_relays
 (S_parConnPointer->bitl[pbl]);
 prim_wait(3 MS);
 if (MbaTest(S_parConnPointer->bitl[pbl],
 SREXPD, SRESPD, DontDoMbaRly)
 == FAIL)
 goto finish;
 close_io_relays
 (S_parConnPointer->bitl[pbl]);
 open_mba_relays
 (S_parConnPointer->bitl[pbl]);

 if (theSiteCount > 1 && aSiteFailed)
 update_parconn (&S_tmpParConn, &p_sdbit);
}

10

© 2008 Galois, Inc.

/* 2. AFTER */

for(pbl = 0; pbl < parconn_getcount(S_parConnPointer);
 pbl++)
{
 close_mba_relays
 (parconn_getconn(S_parConnPointer, pbl));
 open_io_relays
 (parconn_getconn(S_parConnPointer, pbl));
 prim_wait(3 MS);
 if (MbaTest(parconn_getconn(S_parConnPointer, pbl),
 SREXPD, SRESPD, DontDoMbaRly)
 == FAIL)
 goto finish;
 close_io_relays
 (parconn_getconn(S_parConnPointer, pbl));
 open_mba_relays
 (parconn_getconn(S_parConnPointer, pbl));

 if (theSiteCount > 1 && aSiteFailed)
 parconn_update (S_tmpParConn, p_sdbit);
}

11

© 2008 Galois, Inc.

Building the translator

• C-Kit in ML
• Tight schedule, regular releases
• 6 months

Lesson 1
Functional programming covers over a multitude of sins

12

© 2008 Galois, Inc.

C

Translators!!!

ATE market

Business
legacy code

COBOL

IDEAL

• Build demos
• Visit potential customers
• Align with channel partners

13

© 2008 Galois, Inc.

Market issues

Lesson 2
Keep the blue line above the red line

14

© 2008 Galois, Inc.

Analysis

• Didn’t read the market properly
– References
– Budgets

• Lost focus on our core business
• Needed to re-invent Galois

– Very challenging times

Lesson 3
It’s not about technology,

it’s about markets and relationships

15

© 2008 Galois, Inc.

Who are we?

• Examination
– Look at what we’ve been successful at
– Look at our skill sets
– Ask our clients

• Synthesize
• Define the brand

Lesson 4
If you don’t know who you are,
then neither does anyone else

16

© 2008 Galois, Inc.

We want to see software built
with the same diligence and analysis

as other engineers build bridges

High Assurance Software

• Let the software itself be
trustworthy
– Software artifacts to speak for

themselves

– ... rather than hoping to rely on the
process that created them

• Use mathematical models to
enable tractable analysis
– Executable models and formal

methods
– A model is an abstraction that allows

thought at a higher level

• Follow open standards
– Build components with high internal

integrity

– Maximize interoperability

17

© 2008 Galois, Inc.

Galois Business Model

End Users

User
Reps

R&D
funding

System
Developer

Ideas and needs

Technology

18

$$

$$

Basic
Research

© 2008 Galois, Inc.

Challenge: Correctness of Crypto

Requires skills in math
AND programming

Variety of target
architectures

Validation is complex
and tedious

19

• Validation and verification of crypto
implementations is critical to crypto-
modernization programs

• Not just the DoD

• “25% of algorithms submitted for
FIPS validation had security flaws”
Director NIST CMVP, March 26, 2002

© 2008 Galois, Inc.

Cryptol: One Specification — Many Uses

Design Validate

Build

Cryptol
Interpreter

Domain-Specific Design
Capture

w0=u-I*I modp + u-I*wl mod p
s=f*(w0 +pw2) (mod q)

Assured Implementation

Verify crypto
implementations

Models and
test cases

Special purpose
processor

FPGA(s)

C or Java

Target
HW code

Cryptol
Tools

20

© 2008 Galois, Inc.

Cryptol Toolset

• Cryptol™ Interpreter
– Enables algorithm exploration and debugging

• Cryptol™ FPGA Compiler
– Automates algorithm-to-hardware
– Throughputs up to 50Gbps+
– Algorithm- and device-agile

• Cryptol™ Verifier
– Performs equivalence checking between algorithm representations
– Works at any level from Cryptol source to netlist
– Extremely fast

21

Basic Cryptol tools currently used by GDIT in AIM crypto-development
Reported 25% reduction in development times

© 2008 Galois, Inc.

Early Use of Models

• Early testing/analysis has a profound cost
benefit

Time / Money

System

Module

Unit

Size

Executable Models

22

© 2008 Galois, Inc.

Engineering in Haskell

 Modeling

• Mathematical foundation
– Allows for mathematical guarantees

of behavior
– High assurance

• Very powerful abstraction
– Say what needs to be said, nothing

more
– Easier to build smarter software

• Executable models
– Automatic memory access and

protection
– Non-deterministic timings

– Flexible and powerful

 Production

• Smooth path from model to product
– The executable model is the first

prototype
– Incremental refinements from

problem focus to solution focus

• Huge productivity benefits
– Shorter (2-10x), clearer, and more

maintainable code
– Reducing time-to-deployment

• Scalable to complex systems
– Concise expression
– Overcomes limitations of earlier

formal and semi-formal methods
– Multi-core ready !!

23

© 2008 Galois, Inc.

Cross Domain Collaboration

• Problem: information sharing across security
domains (e.g. unclass -> TS)
– Ensuring information flows from low to high
– High assurance (SABI, TSABI environments)
– Compatible with existing and future networks

• Shared network file server, with read down
– Designed certifiable architecture up front
– Leverage assurance efforts elsewhere (MILS, trusted

separation kernel)
– Runs on standard COTS (Intel) hardware

24

© 2008 Galois, Inc.

• Separate networks
are used to separate
information at
different
classifications levels

• These networks are
air-gapped to
prevent information
leakage

Cross-domain webDAV server

High Users

High Network

Low Network

Authorization /
Authentication

Service

Low Users

Authorization /
Authentication

Service

Secure read-down

WebDAV,
HTTP

WebDAV,
HTTP

Cross-domain file store

2-4 networks

High users/applications see
Integrated web/filestore
with low and high content together

Low users/applications see simple
web/filestore with low content only

Content Checker
Service

Content Checker
Service

25

© 2008 Galois, Inc.

Internal Architecture

MILS = Multiple Independent
Levels of Security

1. Factor the security
architecture

2. Minimize the number of
components requiring high
assurance

3. Keep each as simple as
possible

4. Use formal methods in
critical places

26

© 2008 Galois, Inc.

File System Characteristics

• Single-level file systems access
multiple disk drives
– Drives and their firmware are

outside the TCB

• Read access from high must be
invisible to low
– No locking (hi-lo channel)
– No abort/retry (lo-hi denial of

service)

• No existing file system would
work
– Traditional cache coherency is

infeasible across security
boundaries

– Designed WFFS (wait-free file
system)

27

© 2008 Galois, Inc.

Block Access Controller

• BAC directs accesses across
multiple disk drives
– Block-level requests
– Request queuing

• BAC spans partitions at
multiple levels
– High assurance component
– Eliminate data channels

between levels
– Control timing channels

between levels

• Modeled in Haskell
– Proven in Isabelle
– Implemented in simple C !

28

© 2008 Galois, Inc.

Line Count Breakdown of Web-Server

21%

18%

18%

16%

1%

11%

6%
8%

Server
WebDAV, HTTP
System Support
Wait-fee File System
Audit
Misc
BAC C-code
Other C-code

Total: 54KLOC

29

© 2008 Galois, Inc.

Haskell

• Flexibility of Haskell enable substantial changes
– Authentication and a plugin architecture added after the

system was essentially finished as web server
– Multi-disk buffer block cache added to our file system after the

file system was complete

• FFI worked well and reliably
– The low-level access to the BAC
– The interface to the SSL library written in C

• Modules system mostly worked well
– Would have liked a way to manage imports more flexibly

• Heap and RTS
– Prohibitively complex for creating secure components

30

© 2008 Galois, Inc.

Feedback on Haskell

• “My favorite pro: ease of maintenance! Change the data
type and let the compiler walk you through the entire code
base pointing to every single place you need to worry
about.”

• “GHC got quite slow at one point. We had generated
programs whose datatypes has ~200 constructors, with about
the same number of type parameters. The took about 30
minutes to compile.”

• “We had 30+ methods to access the model. Newtype
deriving was great for generating all these components
automatically.”

31

© 2008 Galois, Inc.

Haskell Tools

• Profiler guided all the performance improvements
• Testing by both QuickCheck and HUnit

– Many tests were IO based, used lots of HUnit tests
– HPC developed to address coverage needs; not yet used in detail

• Tried to use Cabal to put multiple packages into a system
hierarchy
– Had to make a complex build system that had to figure out

dependencies
– Also had to customize Cabal also to allow build-local packages

• Haddock
– Haddock lets you add comments to types, generating HTML docs
– Worked beautifully!

32

© 2008 Galois, Inc.

Example Coverage Markup

33

© 2008 Galois, Inc.

Haskell Program Coverage Dashboard

34

© 2008 Galois, Inc.

Performance

Preliminary performance results
• Laziness

– “To a first approximation,
strictness versus laziness
didn’t matter squat.”
Andy Gill, key developer

• Most early performance
problems were with
manipulation of binaries
– Original bhPut copied Binary

objects byte-by-byte
– Modified version used clib’s

memmove

35

© 2008 Galois, Inc.

Focus, focus, focus

36

© 2008 Galois, Inc.

Galois Today

• 40 employees, primarily technical/engineering
– Flat organization: a “collaborative web”
– Stable and profitable, growing diversification of clients

• Products
– Translator for chip-test programs
– AIM development environment
– Cryptol system
– Flexible syntax front-end

• In beta
– Cross-domain network filestore
– Tearline federation of media-wikis
– Crypto IP cores on FPGAs
– OS and virtualization models

37

© 2008 Galois, Inc.

Technology conclusion

• Haskell gave us the engineering freedom to build systems right
– Implement big new capabilities like the file-system
– Performance is great
– Concurrency was really easy to use, multi-core for free
– Straightforward to enable interaction with non-Haskell parts
– Types are wonderful

• Big systems could benefit from better Haskell infrastructure
– Flexible module import
– Compilation manager

• Security
– Cannot build high-security components directly in Haskell because

of the runtime system and heap, but still good for modeling
– Really could do with a better handle on space usage

38

© 2008 Galois, Inc.

Functional
Object Oriented

Procedural

Era of Functional Languages?

 1980 1990 2000 2010

Informally structured

39

