
Declarative Programming Techniques for Many-Core
Architectures

Satnam Singh
Microsoft Research

7 JJ Thomson Avenue
Cambridge, Cb3 0FB

United Kingdom
satnams@microsoft.com

Abstract
Future manycore architectures are likely to have heterogeneous
computing resources which will include conventional CPUs as

FPGAs. Many of the techniques that the reconfigurable
computing community has championed will find new applications
in mainstream applications. One challenge posed by such
manycore architectures is the requirement to target multiple
parallel computing resources from a single description (or code).
This paper proposes a design methodology for the specification
and implementation of data parallel computations that can be
mapped to either circuits on FPGAs or pixel-shader code on
GPUs from exactly the same description. These descriptions
exploit higher order combinators and polymorphism to provide
powerful glue for composing data parallel descriptions in a
generic way. We present two implementations of these
combinations: one in F# which is a variant of the ML functional
language and the other in the C# language which uses generics
and C# delegates to achieve the effect of higher order
combinators. We present the results of implementations that
execute on Virtex FPGAs and ATI graphics cards.

1. INTRODUCTION
Reconfigurable computing fabrics like FPGAs stand to enjoy an
important role in future manycore architectures that will comprise
heterogeneous processors, programmable data paths and special
hardware acceleration architectures (like FPGAs). In this paper we
argue for the need for high level data parallel descriptions that can
be compiled to FPGA-based hardware; to GPUs; or to multi-
threaded software for execution on multiple CPU cores. We
predict that future chips will have a great variety of parallel
computing resources which will be used as market differentiators
for price and performance. However, software will need to
execute on each of these configurations, albeit with different
performance characteristics. This will require components of
software systems to be designed in such a way as to allow
execution on CPUs, GPUs (and related parallel data-path oriented
architectures) and FPGAs. Designing a different implementation
for a module for each target is impractical and not all possible
targets may be known at compile time. Instead, we argue that it is
far more productive to cast data parallel descriptions in a form
that can be readily mapped to a variety of data parallel computing
targets including multi-core processors, GPUs and FPGAs. This
allows data parallel descriptions to target different kinds of
parallel computing resources and it also helps to dynamically

migrate calculations from one resource to another. We advocate
the view that many of the techniques and principles that have been
applied to run-time reconfiguration will also find mainstream
applicability in future manycore architectures.
The contribution of this paper is a data parallel formalism based
on higher order combinators that provides a highly composable
way of building up re-targetable data parallel descriptions. This
paper illustrates the proposed approach with a sorting example.
The technique we propose is largely language neutral and we
outline two implementations in very different languages: one in
F# which is a variant of the ML functional language which is
interoperable with the .NET framework on the other in C# which
is a modern object-oriented language.
Other researchers such as Cheung, Luk and Mencer have
presented results or undertaken work which show that GPUs are
already an interesting parallel computing resource which can
outperform FPGAs for certain tasks. The Brook [1] system from
Stanford also shows how viable GPUs are as general purpose
computing engines. The objective of this paper is not to present
further evidence about the potential of GPUs but instead to show
how GPUs and FPGAs can be targeted from a single description.
We believe that the techniques described in this paper have an
important role to play in the search for design methodologies that
can target the heterogeneous parallel computing resources of
future manycore architectures.

2. FUTURE MANYCORE ARCHITECTURES
The path of least imagination for future processor design is to
stamp out many copies of a CPU die and connect them together
with a coherent memory. However, it is far from certain that this
is a sensible approach for a variety of reasons including the lack
of scalability of cache coherence, lack of parallel programming
models and power consumption. Instead, we propose that future
manycore architectures may look like the Metropolis system
described in Figure 1.

Hardware Design and Functional Languages 13

Figure 1: A potential manycore architecture
Such an architecture comprises conventional legacy processors,
many smaller processors, an on-chip network, an FPGA-like

of a highly programmable parallel data-path. A key requirement
for such an architecture is the ability to program the various

can take on different forms depending on the implementation
target.

3. DATA PARALLEL DESCRIPTIONS
Data parallel descriptions can take many forms varying from
explicit and fairly static descriptions of data-flow computing
resources to very indirect descriptions in an imperative language
which many involve significant analysis to extract parallelism
from nested loops and complex array indexing. In this paper we
advocate descriptions from the former category because these are
more amenable for translation into circuits for realization on
FPGAs (or other reconfigurable computing resources); pixel-
shader code for GPUs; or for multi-core CPUs.
We advocate data parallel descriptions which have the following
characteristics:
Higher order. This means that the data parallel descriptions are
made up of elements that take computations as inputs and return
computations as results. This is an important ingredient which is
needed to allow us to devise a highly composable data parallel
design methodology. An example of a higher order operation is
one that takes an algorithm for solving a problem, some problem
set and then returns a new algorithm that uses two parallel
instances of the original algorithm on the given input. Examples
of such higher order functions appear later in this paper.
Polymorphic. The data parallel descriptions should be general
enough to range over many kinds of input which allows such
descriptions to be applicable to many kinds of implementation
target. Examples in this paper show how we exploit
polymorphism in F# and generics in C# to achieve this effect.
Data-parallel. The descriptions should make it easy to spot how
calculations are applied in parallel to a given input stream. Either
the same operation is applied to each element of a stream (in
SIMD style) or different operations are performed for each input.
Our approach supports either style.

The remainder of this paper presents an example of a parallel
sorter which can be implemented on FPGAs, GPUs or multi-core
CPUs from the same description based on the principles we have
just described.

4. DATA PARALLEL CODE IN F# AND C#
In this paper we present higher order polymorphic and recursive
data parallel descriptions in two languages: F# and C#. In F# we
make use of the polymorphic type system and we define useful
combinators to give what looks like a domain specific language
for describing data parallel networks. In C# we exploit the generic
facility to achieve a similar effect to polymorphism and we make
heavy use of parameterized static methods, delegates and
anonymous delegates which are used to define combinators for
parallel descriptions.
In F# we provide a serial composition operator which has a circuit
simulation behavior given by this definition:
let (>->) f1 f2 i = f2 (f1 i)
This lets us write A >-> B to mean connect the output of
computation (or circuit A) to the input of computation (or circuit)
B. We also introduce a useful library of list operations for tasks
like halving and zipping lists.
Higher order functions are a primitive feature of F# but in C# we
need to define the type of higher order parameters using delegate
types. We also use generics to help us define a very general notion
of a function that takes one value and returns a result of a possibly
different value:
public delegate T2 unaryFn<T1, T2>(T1 v);
We can now use the type unaryFn to describe higher order
parameters in C#. This describes a function (or method) that takes
as input some parameterized type T1 and returns a parameterized
type T2.

5. A PARALLEL SORTER
This section describes how to build a data parallel sorter circuit
using butterfly networks which are carefully placed to ensure high
performance. The sorter circuit is made by recursively merging
the results of sub-sorts. A top-level schematic of the circuit that
we present in this section is shown below.

Figure 2: The recursive structure of the sorter
The merger that we present is bitonic which requires the first half
of the input list to be increasing and the second half decreasing
(or vice versa). The result of the top sorter is reversed to
accommodate this requirement.
Given the ability to sort two numbers and the diagram above we
have a recursive formula for making sorters of any size. A data
parallel description of the two sorter is:

14 Hardware Design and Functional Languages

The FPGA the implementation of the two sorter is given below:

Figure 3: The FPGA layout of the two-sorter.
For the CPU version the two sorter simply takes streams of values
and sorts them directly. The GPU version used a system called
Accelerator [7] from Microsoft to define a two-sorter component:
public static List<FloatParallelArray>
sort2(List<FloatParallelArray> l)
{ FloatParallelArray cf = l[0] - l[1];
 FloatParallelArray o1 =
 FloatParallelArray.Cmp(cf, l[1], l[0]);
 FloatParallelArray o2 =
 FloatParallelArray.Cmp(cf, l[0], l[1]);
 List<FloatParallelArray> r
 = new List<FloatParallelArray>();
 r.Add(o1);
 r.Add(o2);
 return r;
}
This code results in a pair of pixel shaders being generated (one
for each output):
s_2_0
dcl_2d s0

dcl_2d s1
dcl t0.xy
texld r0, t0, s0
texld r1, t0, s1
sub r2, r0, r1
cmp r0, r2, r1, r0
mov oC0, r0

ps_2_0
dcl_2d s0
dcl_2d s1
dcl t0.xy
texld r0, t0, s0
texld r1, t0, s1
sub r2, r0, r1
cmp r1, r2, r0, r1
mov oC0, r1

Each pixel shader takes the same two streams as input (s0 and s1).
The input streams are loaded as textures into registers r0, r1, and
r2. After the two-sorter computation (involving a subtraction and
a comparison) values are streamed back to the texture memory.
Larger sorters result in larger pixel shaders which do not involve
so many round-trips to memory. We use texture memory for the
sorter input streams [8].
A merger called Batcher's Bitonic Merger can be made by using a
butterfly of two sorters. Here is an example of a specific butterfly
network of two sorters (written as 2S) which merges eight
numbers:

Figure 4: A bitonic merger
To help describe such butterfly networks in a data parallel way a
few useful circuit combinators are introduced. From the top level
description we see that a reverse operation is required and we can
simply reverse function of the host language:

Hardware Design and Functional Languages 15

Figure 5: The reverse combinator
Another very useful wiring combinator is called riffle and an
instance of it is shown below:

Figure 6: The riffle combinator
This wiring combinator interleaves the odd and even elements of
the input list (shown on the left). It can be defined in F# as:
let riffle = halveList >-> zipList >-> unPair
The halve function splits a list into two halves which are returned
in a two element tuple. The ziP combinator takes a pair of lists
and returns a new list of pairs by associating each element in the
first list with the corresponding element in the second list. The
unpair function then flattens this list of pairs into a list.

The definition of riffle in C# makes use of a generic List
collection to hold the elements of the list (rather than the
polymorphic list in F#). We define riffle as a static method which
most closely resembles a function and the definition makes use of
other static methods for halving, zipping and unpairing lists.
public static List<T> riffle<T>(List<T> l)
{ return unpair(zip(halve(l))); }

It is also useful to be able to perform the inverse function of riffle
called unriffle. This circuit can be thought of as the reflection of
the riffle circuit along a vertical axis as shown below.

Figure 7: Unriffle
In F# this is described as:
let unriffle = pair >-> unzipList >-> unhalveList
and there is a corresponding definition for C#.
Sometimes a bus containing n elements is processed by using two
copies of a circuit such that the first copy of the circuit operates
on the bottom half of the input and the second copy of the circuit
operates on the top half of the input as shown below for a four
input bus:

Figure 8: The two higher order combinator
The combinator that performs this task is called two and is easily
defined in F# in terms of the more primitive par combinator:

16 Hardware Design and Functional Languages

let two r = halve >-> par2 r r >-> unhalve
The par combinator has different interpretations for different
targets. For CPU targets it spwans off two threads each of which
compute R for their input. For GPUs it tries to create a pixel
shader which has the code for R which is applied in parallel to
two streams. For FPGAs it causes two R circuits to be
instantiated.
In C# the two higher order combinator can be defined using a
delegate type:
public static List<T2> two<T1, T2> (unaryFn<List<T1>,
List<T2>> r, List<T1> l)
{ return unhalve(par2(r, r,halve(l))); }
Another combining form that uses two copies of the same circuit
is ilv (pronounced "interleave"). This combinator has the
property that the bottom circuit processes the inputs at even
positions and the top circuit processes the inputs at the odd
positions. An instance of ilv R for an eight input bus is shown
below.

Figure 9: The ilv higher order combinator
The ilv combinator can be defined by noticing the it is the
composition of an unriffle, two R and riffle. In F# this combinator
is defined as:
let evens f = chop 2 >-> map f >-> concat
In C# the definition once again makes use of a delegate:
public static List<T2> ilv<T1, T2>(unaryFn<List<T1>,
List<T2>> f, List<T1> l)
{ return riffle(two(f, unriffle(l))); }
The evens combinator chops the input list into pairs and then
applies copies of the same circuit to each input. The argument
circuit for evens must be a pair to pair circuit. An instance of
evens two_sorter over an eight input list is shown below.

Figure 10: The evens higher order combinator
This combinator is defined in F# as:
let evens f = chop 2 >-> map f >-> concat
Using the combinators shown above we can now describe in F# a
butterfly network of some circuit r (such that r is a pair to pair
circuit or calculation):
let rec bfly r n =
 match n with
 1 -> r
 | n -> ilv (bfly r (n-1)) >-> evens r
The C# description requires the use of an anonymous delegate to
achieve the effect of the partial application in the description
shown above.
public static List<T> bfly<T>(unaryFn<List<T>, List<T>> r,
List<T> l)
{ if (l.Count == 2)

return r(l);
 else
 return evens(r, ilv<T, T>(delegate(List<T> i)
 { return bfly(r, i); }, l));
}
This is a recursive butterfly description. Here is a picture of bfly r
1:

This makes sense in the case of a two sorter since a butterfly of
size 1 has 2 inputs which can be sorted by a single two sorter. The
layout for bfly r 2 is:

Hardware Design and Functional Languages 17

The left hand side of this picture shows an interleave of R and the
right hand side shows evens R. The layout for bfly r 3 is:

Note that a sub-butterfly of size 2 has been identified with a pale
background. It can be instructive to unfold the bfly r 3 expression
and then try and spot where the various combinators occur in the
picture.
bfly r 3
 = ilv (bfly r 2)) >-> evens r
 = ilv (ilv r >-> evens r) >-> evens r
To make a merger all we need to do is to instance this butterfly
with a two sorter. Here is a picture of bfly r two_sorter shown
before. This solves the right hand side of the sorter architecture
since bfly two_sorter makes a bitonic merger:

The two remaining sorters can be recursively decomposed using
exactly the same technique used to decompose the top level sorter.
For example, the upper sorter can be implemented by using a
merger (shown on the right) and then sorting the two sub-lists.
Since each sub-list contains just two elements we get to the base
case of the recursion and deploy a two sorter.

But how is the merger realized? As before, it is just a butterfly of
two sorters, in this case bfly 2 two_sorter:

Applying the same technique to the lower sorter gives the
complete architecture for a size 3 sorter (i.e. 2^3 inputs = 8):

Although it is not at all obvious this circuit sorts eight numbers it
has been systematically derived from a simple procedure which
can be codified in F# as:
let rec bsort n =
 match n with
 1 -> sort2
 | n -> two (bsort (n-1)) >-> sndList rev >->
 bfly sort2 n
This description says that a sorter of degree 1 (i.e. 2 inputs) can be
made using a two sorter. A larger sorter is made by using two
small sorters, then reversing the result of the upper sort, and then
merging these sub-sorts using a butterfly of two sorters. Note that
this sorter description is parameterized on the specific sorter to be
used and this a key feature which allows this description to be
used for so many different targets.
The layout of a 32-input sorter on a Virtex XC2V3000 part is
shown below. The netlist generators infers layout information
from the combinators used to compose the data parallel
description and this information results in a densely packed layout
that is faithful to the layouts shown for the butterfly networks.
This implementation sorts over 165 million 16-bit numbers
arriving in 32 streams per second.

18 Hardware Design and Functional Languages

Figure 11: Implementation of sorter on Xilinx
XC2V3000

A GPU implementation of several sorters using exactly the same
higher order data parallel operations shows that for a given card
there seems to be an 8X degree of parallelism:

Two-Sorts Per Second

0

20000

40000

60000

80000

100000

120000

140000

160000

0 100 200 300 400 500 600 700 800

Total number of 2-sorts

N
um

be
r o

f 2
-s

or
ts

 p
er

 s
ec

on
d

Sorting Speed

Figure 12: GPU Performance
This graph shows work (the number of two-sorts needed) on the
x-axis and parallelism on the y-axis (the number of two-sorts per
second) and includes the time required to compile and JIT the
code from C# or F# into pixel shader code as well as memory
transfer to and from the GPU from the CPU. The graphics card
used was an ATI Radeon 9600 and we found similar results on
other cards. Each stream contained 2048 values. It shows that for
8 inputs there is roughly an 8X improvement in performance

which suggests that sorters of this size are well suited to the pixel
shaders on the chard. As the size of the inputs grows we believe
the need to transfer memory to and from the card becomes too
large an overhead.

6. RELATED WORK
Mencer has developed the ASC [6] stream based system which
also seems very suitable for compilation to multiple targets
including GPUs and FPGAs.
GPUTeraSort [1] at is another example of a GPU-based sorter
which also used a bitonic sorter which works on large databases
composed of billions of records and wide keys. Benchmarks have
shown that the GPU-based sorter outperforms high-end
workstations. Other interesting applications for data-parallel
calculations for FPGAs and GPUs include biological sequence
analysis [1]. Linear algebra is also another domain that seems
suited to GPU [2][4].

7. FUTURE WORK
The approach we used for programming GPUs involved using a
DirectX-based system which makes use of proprietary information
about how to exactly configure the pixel shaders (we do not use
the vertex shaders). We now propose to prototype our own
designs inspired by GPU hardware onto FPGA devices but with
an architecture and programming model which is better suited for
more general purpose data parallel computing.
The kind of restrictions that we would like to overcome are things
like: limited numbers of registers; slow bandwidth back o the
main processor; and more direct SIMD-style descriptions.

8. CONCLUSIONS
This paper shows the viability of using data parallel descriptions
based on combinators that exploit higher order functions and
polymorphism to give descriptions which can be effectively
mapped onto FPGAs and GPUs. The ability to target different
parallel computing devices from the same description will become
more important as future manycore architectures take on
heterogeneous computing resources onto the same die as
processors. We believe that architectures based on GPUs and
FPGAs will be prime candidates for the manycore era and the
programming model described here will help to fully exploit
future computing architectures.

REFERENCES

[1] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M.
Houston, and P. Hanrahan. Brook for GPUs: Stream
computing on graphics hardware. SIGGRAPH, 2004.

[2] K. Fatahalian, J. Sugerman, and P. Hanrahan. Understanding
the efficiency of GPU algorithms for matrix- multiplication.
Graphics Hardware, 2004.

[3] Naga K. Govindaraju; Jim Gray; Ritesh Kumar; Dinesh
Manocha. GPUTeraSort: High Performance Graphics
Coprocessor Sorting for Large Database Management.
Microsoft Technical Report MSR-TR-2005-183. December
2005.

Hardware Design and Functional Languages 19

[4] J. Kruger and R. Westermann. Linear algebra operators for
GPU implementation of numerical algorithms. SIGGRAPH,
2003.

[5] O. Mencer, D. J. Pearce, L. W. Howes, and W. Luk. Design
space exploration with A Stream Compiler. IEEE
International Conference on Field Programmable
Technology (FPT), Dec 2003.

[6] O. Mencer. ASC, a stream compiler for computing with
FPGAs. IEEE Transactions on CAD, 2006.

[7] David Tarditi; Sidd Puri; Jose Oglesby. Accelerator:
simplified programming of graphics processing units for
general-purpose uses via data-parallelism. MST Technical
Report MSR-TR-2005-184. December 2005.

[8] S. Venkatasubramanian. The graphics card as a stream
computer. SIGMOD-DIMACS Workshop on Management
and Processing of Data Streams, 2003.

[9] G. Voss, A. Schröder, W. Müller-Wittig, B. Schmidt, Using
Graphics Hardware to Accelerate Biological Sequence
Analysis, IEEE Tencon 2005, Melbourne, Australia, 2005

20 Hardware Design and Functional Languages

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

