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Abstract 
Future manycore architectures are likely to have heterogeneous 
computing resources which will include conventional CPUs as 

FPGAs. Many of the techniques that the reconfigurable 
computing community has championed will find new applications 
in mainstream applications. One challenge posed by such 
manycore architectures is the requirement to target multiple 
parallel computing resources from a single description (or code). 
This paper proposes a design methodology for the specification 
and implementation of data parallel computations that can be 
mapped to either circuits on FPGAs or pixel-shader code on 
GPUs from exactly the same description. These descriptions 
exploit higher order combinators and polymorphism to provide 
powerful glue for composing data parallel descriptions in a 
generic way. We present two implementations of these 
combinations: one in F# which is a variant of the ML functional 
language and the other in the C# language which uses generics 
and C# delegates to achieve the effect of higher order 
combinators. We present the results of implementations that 
execute on Virtex FPGAs and ATI graphics cards. 

1. INTRODUCTION
Reconfigurable computing fabrics like FPGAs stand to enjoy an 
important role in future manycore architectures that will comprise 
heterogeneous processors, programmable data paths and special 
hardware acceleration architectures (like FPGAs). In this paper we 
argue for the need for high level data parallel descriptions that can 
be compiled to FPGA-based hardware; to GPUs; or to multi-
threaded software for execution on multiple CPU cores. We 
predict that future chips will have a great variety of parallel 
computing resources which will be used as market differentiators 
for price and performance. However, software will need to 
execute on each of these configurations, albeit with different 
performance characteristics. This will require components of 
software systems to be designed in such a way as to allow 
execution on CPUs, GPUs (and related parallel data-path oriented 
architectures) and FPGAs. Designing a different implementation 
for a module for each target is impractical and not all possible 
targets may be known at compile time. Instead, we argue that it is 
far more productive to cast data parallel descriptions in a form 
that can be readily mapped to a variety of data parallel computing 
targets including multi-core processors, GPUs and FPGAs. This 
allows data parallel descriptions to target different kinds of 
parallel computing resources and it also helps to dynamically 

migrate calculations from one resource to another. We advocate 
the view that many of the techniques and principles that have been 
applied to run-time reconfiguration will also find mainstream 
applicability in future manycore architectures. 
The contribution of this paper is a data parallel formalism based 
on higher order combinators that provides a highly composable 
way of building up re-targetable data parallel descriptions. This 
paper illustrates the proposed approach with a sorting example. 
The technique we propose is largely language neutral and we 
outline two implementations in very different languages: one in 
F# which is a variant of the ML functional language which is 
interoperable with the .NET framework on the other in C# which 
is a modern object-oriented language. 
Other researchers such as Cheung, Luk and Mencer  have 
presented results or undertaken work which show that GPUs are 
already an interesting parallel computing resource which can 
outperform FPGAs for certain tasks. The Brook [1] system from 
Stanford also shows how viable GPUs are as general purpose 
computing engines. The objective of this paper is not to present 
further evidence about the potential of GPUs but instead to show 
how GPUs and FPGAs can be targeted from a single description. 
We believe that the techniques described in this paper have an 
important role to play in the search for design methodologies that 
can target the heterogeneous parallel computing resources of 
future manycore architectures. 

2. FUTURE MANYCORE ARCHITECTURES
The path of least imagination for future processor design is to 
stamp out many copies of a CPU die and connect them together 
with a coherent memory. However, it is far from certain that this 
is a sensible approach for a variety of reasons including the lack 
of scalability of cache coherence, lack of parallel programming 
models and power consumption. Instead, we propose that future 
manycore architectures may look like the Metropolis system 
described in Figure 1.  
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Figure 1: A potential manycore architecture 
Such an architecture comprises conventional legacy processors, 
many smaller processors, an on-chip network, an FPGA-like 

of a highly programmable parallel data-path. A key requirement 
for such an architecture is the ability to program the various 

can take on different forms depending on the implementation 
target. 

3. DATA PARALLEL DESCRIPTIONS
Data parallel descriptions can take many forms varying from 
explicit and fairly static descriptions of data-flow computing 
resources to very indirect descriptions in an imperative language 
which many involve significant analysis to extract parallelism 
from nested loops and complex array indexing. In this paper we 
advocate descriptions from the former category because these are 
more amenable for translation into circuits for realization on 
FPGAs (or other reconfigurable computing resources); pixel-
shader code for GPUs; or for multi-core CPUs. 
We advocate data parallel descriptions which have the following 
characteristics: 
Higher order. This means that the data parallel descriptions are 
made up of elements that take computations as inputs and return 
computations as results. This is an important ingredient which is 
needed to allow us to devise a highly composable data parallel 
design methodology. An example of a higher order operation is 
one that takes an algorithm for solving a problem, some problem 
set and then returns a new algorithm that uses two parallel 
instances of the original algorithm on the given input. Examples 
of such higher order functions appear later in this paper. 
Polymorphic. The data parallel descriptions should be general 
enough to range over many kinds of input which allows such 
descriptions to be applicable to many kinds of implementation 
target. Examples in this paper show how we exploit 
polymorphism in F# and generics in C# to achieve this effect. 
Data-parallel. The descriptions should make it easy to spot how 
calculations are applied in parallel to a given input stream. Either 
the same operation is applied to each element of a stream (in 
SIMD style) or different operations are performed for each input. 
Our approach supports either style. 

The remainder of this paper presents an example of a parallel 
sorter which can be implemented on FPGAs, GPUs or multi-core 
CPUs from the same description based on the principles we have 
just described. 

4. DATA PARALLEL CODE IN F# AND C#
In this paper we present higher order polymorphic and recursive 
data parallel descriptions in two languages: F# and C#. In F# we 
make use of the polymorphic type system and we define useful 
combinators to give what looks like a domain specific language 
for describing data parallel networks. In C# we exploit the generic 
facility to achieve a similar effect to polymorphism and we make 
heavy use of parameterized static methods, delegates and 
anonymous delegates which are used to define combinators for 
parallel descriptions. 
In F# we provide a serial composition operator which has a circuit 
simulation behavior given by this definition: 
let (>->) f1 f2 i = f2 (f1 i) 
This lets us write A >-> B to mean connect the output of 
computation (or circuit A) to the input of computation (or circuit) 
B. We also introduce a useful library of list operations for tasks 
like halving and zipping lists. 
Higher order functions are a primitive feature of F# but in C# we 
need to define the type of higher order parameters using delegate 
types. We also use generics to help us define a very general notion 
of a function that takes one value and returns a result of a possibly 
different value: 
public delegate T2 unaryFn<T1, T2>(T1 v); 
We can now use the type unaryFn to describe higher order 
parameters in C#. This describes a function (or method) that takes 
as input some parameterized type T1 and returns a parameterized 
type T2. 

5. A PARALLEL SORTER
This section describes how to build a data parallel sorter circuit 
using butterfly networks which are carefully placed to ensure high 
performance. The sorter circuit is made by recursively merging 
the results of sub-sorts. A top-level schematic of the circuit that 
we present in this section is shown below. 

Figure 2: The recursive structure of the sorter  
The merger that we present is bitonic which requires the first half 
of the input list to be increasing and the second half decreasing 
(or vice versa). The result of the top sorter is reversed to 
accommodate this requirement. 
Given the ability to sort two numbers and the diagram above we 
have a recursive formula for making sorters of any size. A data 
parallel description of the two sorter is: 
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The FPGA the implementation of the two sorter is given below: 

Figure 3: The FPGA layout of the two-sorter. 
For the CPU version the two sorter simply takes streams of values 
and sorts them directly. The GPU version used a system called 
Accelerator [7] from Microsoft to define a two-sorter component: 
public static List<FloatParallelArray> 
sort2(List<FloatParallelArray> l) 
{ FloatParallelArray cf = l[0] - l[1]; 
  FloatParallelArray o1 =   
    FloatParallelArray.Cmp(cf, l[1], l[0]); 
  FloatParallelArray o2 =  
    FloatParallelArray.Cmp(cf, l[0], l[1]); 
  List<FloatParallelArray> r  
    = new List<FloatParallelArray>(); 
  r.Add(o1); 
  r.Add(o2); 
  return r; 
}
This code results in a pair of pixel shaders being generated (one 
for each output): 
s_2_0 
dcl_2d s0 

dcl_2d s1 
dcl t0.xy 
texld r0, t0, s0 
texld r1, t0, s1 
sub r2, r0, r1 
cmp r0, r2, r1, r0 
mov oC0, r0 
 
 
ps_2_0 
dcl_2d s0 
dcl_2d s1 
dcl t0.xy 
texld r0, t0, s0 
texld r1, t0, s1 
sub r2, r0, r1 
cmp r1, r2, r0, r1 
mov oC0, r1 

Each pixel shader takes the same two streams as input (s0 and s1). 
The input streams are loaded as textures into registers r0, r1, and 
r2. After the two-sorter computation (involving a subtraction and 
a comparison) values are streamed back to the texture memory. 
Larger sorters result in larger pixel shaders which do not involve 
so many round-trips to memory. We use texture memory for the 
sorter input streams [8]. 
A merger called Batcher's Bitonic Merger can be made by using a 
butterfly of two sorters. Here is an example of a specific butterfly 
network of two sorters (written as 2S) which merges eight 
numbers: 

Figure 4: A bitonic merger 
To help describe such butterfly networks in a data parallel way a 
few useful circuit combinators are introduced. From the top level 
description we see that a reverse operation is required and we can 
simply reverse function of the host language: 
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Figure 5: The reverse combinator 
Another very useful wiring combinator is called riffle and an 
instance of it is shown below: 

Figure 6: The riffle combinator 
This wiring combinator interleaves the odd and even elements of 
the input list (shown on the left). It can be defined in F# as: 
let riffle = halveList >-> zipList >-> unPair 
The halve function splits a list into two halves which are returned 
in a two element tuple. The ziP combinator takes a pair of lists 
and returns a new list of pairs by associating each element in the 
first list with the corresponding element in the second list. The 
unpair function then flattens this list of pairs into a list. 

The definition of riffle in C# makes use of a generic List 
collection to hold the elements of the list (rather than the 
polymorphic list in F#). We define riffle as a static method which 
most closely resembles a function and the definition makes use of 
other static methods for halving, zipping and unpairing lists. 
public static List<T> riffle<T>(List<T> l) 
{ return  unpair(zip(halve(l))); } 

It is also useful to be able to perform the inverse function of riffle 
called unriffle. This circuit can be thought of as the reflection of 
the riffle circuit along a vertical axis as shown below. 

Figure 7: Unriffle 
In F# this is described as: 
let unriffle = pair >-> unzipList >-> unhalveList  
and there is a corresponding definition for C#. 
Sometimes a bus containing n elements is processed by using two 
copies of a circuit such that the first copy of the circuit operates 
on the bottom half of the input and the second copy of the circuit 
operates on the top half of the input as shown below for a four 
input bus: 

Figure 8: The two higher order combinator 
The combinator that performs this task is called two and is easily 
defined in F# in terms of the more primitive par combinator: 
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let two r = halve >-> par2 r r >-> unhalve  
The par combinator has different interpretations for different 
targets. For CPU targets it spwans off two threads each of which 
compute R for their input. For GPUs it tries to create a pixel 
shader which has the code for R which is applied in parallel to 
two streams. For FPGAs it causes two R circuits to be 
instantiated. 
In C# the two higher order combinator can be defined using a 
delegate type: 
public static List<T2> two<T1, T2>  (unaryFn<List<T1>, 
List<T2>> r, List<T1> l) 
{ return unhalve(par2(r, r,halve(l))); } 
Another combining form that uses two copies of the same circuit 
is ilv (pronounced "interleave"). This combinator has the 
property that the bottom circuit processes the inputs at even 
positions and the top circuit processes the inputs at the odd 
positions. An instance of ilv R for an eight input bus is shown 
below. 

Figure 9:  The ilv higher order combinator 
The ilv combinator can be defined by noticing the it is the 
composition of an unriffle, two R and riffle. In F# this combinator 
is defined as: 
let evens f = chop 2 >-> map f >-> concat 
In C# the definition once again makes use of a delegate: 
public static List<T2> ilv<T1, T2>(unaryFn<List<T1>, 
List<T2>> f, List<T1> l) 
{ return riffle(two(f, unriffle(l))); } 
The evens combinator chops the input list into pairs and then 
applies copies of the same circuit to each input. The argument 
circuit for evens must be a pair to pair circuit. An instance of 
evens two_sorter over an eight input list is shown below. 

Figure 10: The evens higher order combinator 
This combinator is defined in F# as: 
let evens f = chop 2 >-> map f >-> concat 
Using the combinators shown above we can now describe in F#  a 
butterfly network of some circuit r (such that r is a pair to pair 
circuit or calculation): 
let rec bfly r n = 
   match n with 
   1 -> r 
 | n -> ilv (bfly r (n-1)) >-> evens r  
The C# description requires the use of an anonymous delegate to 
achieve the effect of the partial application in the description 
shown above. 
public static List<T> bfly<T>(unaryFn<List<T>, List<T>> r, 
List<T> l) 
{ if (l.Count == 2) 

return r(l); 
  else 
    return evens(r, ilv<T, T>(delegate(List<T> i)   
                     { return bfly(r, i); }, l)); 
}
This is a recursive butterfly description. Here is a picture of bfly r 
1:

This makes sense in the case of a two sorter since a butterfly of 
size 1 has 2 inputs which can be sorted by a single two sorter. The 
layout for bfly r 2 is: 
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The left hand side of this picture shows an interleave of R and the 
right hand side shows evens R. The layout for bfly r 3 is: 

Note that a sub-butterfly of size 2 has been identified with a pale 
background. It can be instructive to unfold the bfly r 3 expression 
and then try and spot where the various combinators occur in the 
picture. 
bfly r 3  
  = ilv (bfly r 2)) >-> evens r  
  = ilv (ilv r >-> evens r) >-> evens r 
To make a merger all we need to do is to instance this butterfly 
with a two sorter. Here is a picture of bfly r two_sorter shown 
before. This solves the right hand side of the sorter architecture 
since bfly two_sorter makes a bitonic merger: 

The two remaining sorters can be recursively decomposed using 
exactly the same technique used to decompose the top level sorter. 
For example, the upper sorter can be implemented by using a 
merger (shown on the right) and then sorting the two sub-lists. 
Since each sub-list contains just two elements we get to the base 
case of the recursion and deploy a two sorter. 

But how is the merger realized? As before, it is just a butterfly of 
two sorters, in this case bfly 2 two_sorter: 

Applying the same technique to the lower sorter gives the 
complete architecture for a size 3 sorter (i.e. 2^3 inputs = 8): 

Although it is not at all obvious this circuit sorts eight numbers it 
has been systematically derived from a simple procedure which 
can be codified in F# as: 
let rec bsort n = 
  match n with 
  1 -> sort2 
  | n -> two (bsort (n-1)) >-> sndList rev >->  
         bfly sort2 n 
This description says that a sorter of degree 1 (i.e. 2 inputs) can be 
made using a two sorter. A larger sorter is made by using two 
small sorters, then reversing the result of the upper sort, and then 
merging these sub-sorts using a butterfly of two sorters. Note that 
this sorter description is parameterized on the specific sorter to be 
used and this a key feature which allows this description to be 
used for so many different targets. 
The layout of a 32-input sorter on a Virtex XC2V3000 part is 
shown below. The netlist generators infers layout information 
from the combinators used to compose the data parallel 
description and this information results in a densely packed layout 
that is faithful to the layouts shown for the butterfly networks. 
This implementation sorts over 165 million 16-bit numbers 
arriving in 32 streams per second. 
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Figure 11: Implementation of sorter on Xilinx 
XC2V3000 

A GPU implementation of several sorters using exactly the same 
higher order data parallel operations shows that for a given card 
there seems to be an 8X degree of parallelism: 
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Figure 12: GPU Performance 
This graph shows work (the number of two-sorts needed) on the 
x-axis and parallelism on the y-axis (the number of two-sorts per 
second) and includes the time required to compile and JIT the 
code from C# or F# into pixel shader code as well as memory 
transfer to and from the GPU from the CPU. The graphics card 
used was an ATI Radeon 9600 and we found similar results on 
other cards. Each stream contained 2048 values. It shows that for 
8 inputs there is roughly an 8X improvement in performance 

which suggests that sorters of this size are well suited to the pixel 
shaders on the chard. As the size of the inputs grows we believe 
the need to transfer memory to and from the card becomes too 
large an overhead. 

6. RELATED WORK
Mencer has developed the ASC [6] stream based system which 
also seems very suitable for compilation to multiple targets 
including GPUs and FPGAs. 
GPUTeraSort [1] at is another example of a GPU-based sorter 
which also used a bitonic sorter which works on large databases 
composed of billions of records and wide keys. Benchmarks have 
shown that the GPU-based sorter outperforms high-end 
workstations. Other interesting applications for data-parallel 
calculations for FPGAs and GPUs include biological sequence 
analysis [1]. Linear algebra is also another domain that seems 
suited to GPU [2][4]. 

7. FUTURE WORK
The approach we used for programming GPUs involved using a 
DirectX-based system which makes use of proprietary information 
about how to exactly configure the pixel shaders (we do not use 
the vertex shaders). We now propose to prototype our own 
designs inspired by GPU hardware onto FPGA devices but with 
an architecture and programming model which is better suited for 
more general purpose data parallel computing. 
The kind of restrictions that we would like to overcome are things 
like: limited numbers of registers; slow bandwidth back o the 
main processor; and more direct SIMD-style descriptions. 

8. CONCLUSIONS
This paper shows the viability of using data parallel descriptions 
based on combinators that exploit higher order functions and 
polymorphism to give descriptions which can be effectively 
mapped onto FPGAs and GPUs. The ability to target different 
parallel computing devices from the same description will become 
more important as future manycore architectures take on 
heterogeneous computing resources onto the same die as 
processors. We believe that architectures based on GPUs and 
FPGAs will be prime candidates for the manycore era and the 
programming model described here will help to fully exploit 
future computing architectures. 
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