ERICSSON 2 1(14)

USER’S GUIDE, [ATA DICTIONARY FOR MNESIA

Purpose

This document describes how to use the data dictionary for the Mnesia
database: rdbms, version 1.5.

This dictionary was first called sysMnesiaDict, and was part of the AXD 301
source code tree.

Author: UIf Wiger <ulf.wiger@ericsson.com>

Contents Page

1 SUMMaANY . .t e e 2
2 Readers Guidelines. i, 2
3 Introduction 2
4 TOOI OVEIVIEW . . . 3
4.1 Central FUNCtions. 3
4.2 Helper Functions i, 5
4.3 The #RDBMS_OBJ{} Record., 7
4.4 Valid Properties 7
4.5 Advanced Properties 10
5 Terminology. 13

%%%

%%% The contents of this file are subject to the Erlang Public License,
%%% Version 1.0, (the "License"); you may not use this file except in

%%% compliance with the License. You may obtain a copy of the License at
%%% http://www.erlang.org/license/EPL1_0.txt

%%%

%%% Software distributed under the License is distributed on an "AS 1S"
%%% basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See
%%% the License for the specific language governing rights and limitations
%%% under the License.

%%%

%%% The Original Code is rdbms-1.5.

%%%

%%% The Initial Developer of the Original Code is Ericsson Telecom

%%% AB. Portions created by Ericsson are Copyright (C), 1998, Ericsson
%%% Telecom AB. All Rights Reserved.

%%%

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 2(14)

1 SUMMARY

The document describes how to use rdbms, a custom data dictionary for the
Mnesia database.

2 READER’S GUIDELINES

Proper setup of the import tool assumes basic knowledge in Erlang and
familiarity with the target database.

3 INTRODUCTION

Mnesia is a database engine for distributed real-time applications developed
in Erlang. The tool described in this document was designed to provide
additional type and integrity checking.

Features provided by rdbms that you otherwise will not get with mnesia

include:

. Type checking, all the standard erlang data types, including
records and custom validation functions.

. Referential integrity checks modeled after the SQL standard.

. Commit and abort triggers, which execute within the context of
the transaction, also supporting nested transactions.

. Compound attributes that can be used e.g. for referential
integrity checks.

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 3(14)

4 TOOL OVERVIEW

rdbms stores metadata as user properties in the mnesia schema. Properties are
stored in the form {Key, Value}, where Key is one of

. {attr, Name, Property}

. {tab, Name, Property}

. {record, Name, Property}
For example:

{{attr, age, type}, integer}
{{record, person, attrs}, [email, name, age, phone]}

{{tab, person, access}, Access_control_list} % not implemented

4.1 CENTRAL FUNCTIONS

The following functions are central to rdbms.erl and will make sure that
specified integrity constraints are met:

41.1 add_properties(Properties)

Inserts a list of properties into the dictionary. For details on valid properties,
see chapter 4.2.

This function creates rdbms if necessary.

Returns {atomic, true} | {aborted, Reason}.

4.1.2 do_add properties(Properties &ble])

Similar to add_properties/1, but this function is meant to be called from
within a schema transaction. Example:

add_properties(Properties) ->
F=fun() ->
do_add_properties(Properties)
end,
mnesia_schema:schema_transaction(F).

do_add_properties(Properties, Table) adds table properties for

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 4(14)

41.3 activity(Fun)

Starts a mnesia transaction which executes the function Fun, using rdbms as
a callback module for mnesia operations.

Note that this function must be used instead of mnesia:transaction() or

mnesia:activity() in order to benefit from the metadata stored in the
dictionary.

4.1.4 create_table(Name, Options)

Analogous to mnesia:create_table(Name, Options), but also recognizes the
option {rdbms, Properties}.

415 do_create_table(Name, Options)

Like create_table/2, but intended to be called from within a schema
transaction, example:

mnesia_schema:schema_transaction(
fun() ->
rdbms:do_create_table(company,
[{attributes, [name,address,...},
{rdbms, [{attr,name,string}]}]),
rdbms:do_create_table(
emp,
[{attributes,[name,company,...]},
{rdbms,
[{{attr,{emp,company},references},
[{company,name,[{match,full},
{delete,ignore},
{update,no_action}]
Hk
{{attr,{company,name},add_references
[{emp,company, [{match,full},
{delete,cascade}}
{update,ignore}}
I

end).

This allows for complex database schema manipulation with full rollback
semantics.

4.1.6 delete_table(Name)

Analogous to mnesia:delete_table(Name). This function also makes sure that
references to the deleted table are removed from all remaining tables.

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 5(14)

4.1.7 do_delete_table(Name)

Like delete_table(Name), but designed to be called from within a schema
transaction.

4.2 HELPER FUNCTIONS
The following functions are meant to provide access to metadata outside the

dictionary, as well as offer some functionality which is not currently in
mnesia.

42.1 select(Bble, Attritute, \alue, SelectAttrs)

Fetches objects from Table where Attribute == Value, and returns the
information specified in SelectAttrs (a list or tuple of attribute names).

If SelectAttrs is a tuple, the function will return a tuple with the specified
attribute values for each object; if SelectAttrs is a list, a list will be returned
instead.

Example:

given a table with records #person{id,surname, lastname,company,tfn}

rdbms:select(person, surname, "Joe", {surname,lastname,company})
[{"Joe", "Armstrong", "Ericsson"}]

Both Attribute and SelectAttrs may specify compound attributes (see below).

4.2.2 fetch objects(able, Attribute, \alue)

Fetches objects from Table where Attribute == Value.

Attribute may specify any attribute, even a compound attribute (see below).
The most appropriate retrieval method is chosen automatically.

423 null_value()

Returns a special null value which is used by rdbms to signify missing
information. Per definition, this is a value which is distinguishable from any
legal value. While it is impossible for an Erlang application to generate such
a value, rboms makes an honest attempt by returning '#.[].#.

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 6(14)

4.2.4 attributes(ble)

Returns a list of attributes, in order, for the table Table.

425 all_attributes(Bble)

Returns a tuple, {PhysicalAttributes, LogicalAttributes}, where
PhysicalAttributes is the same as attributes(Table), and LogicalAttributes is a
list of attributes which are not physically part of the record — e.g. compound
attributes. LogicalAttributes is represented as a list of tuples, {AttrName,
Info}, e.g. {name, {compound, [surname, lasthame]}}

4.2.6 attribute(Pos, @ble)

Returns the name of the attribute in position Pos of Table.

4.2.7 position(AttrName, &ble)

Returns the position of attribute AttrName of Table.

4.2.8 type(attr Attribute)

Returns the type of Attribute.

Attr can be either the attribute name or {Table, Attribute}.

4.2.9 default(attr Attribute)

Returns the default value for Attribute.
Attr can be either the attribute name or {Table, Attribute}.
If no default value for Attribute has been specified in the dictionary, null()

will be chosen, unless Attribute is of type record, in which case a default
record (possibly containing only nulls) will be returned.

4.2.10 default(record, &ible)

Returns a default record for Record, similar to #<Record>{}.

4.2.11 required(attr Attr)

Returns true | false.

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 7(14)

This property is not checked by verify(Record), but should be checked
explicitly by user applications.

4.2.12 bounds(attrAttr)

Returns {inclusive, {Min, Max}} | {exclusive, {Min, Max} | undefined.
{inclusive, {Min, Max}} means Min =< Value =< Max;

{exclusive, {Min, Max}} means Min < Value < Max.

4.3 THE #RDBMS_OBJ{} RECORD

A special record, #rdbms_obj{} has been defined to represent data objects in
a more detailed fashion. The structure of the #rbms_obj{} is such:

name name of the data object
attributes [{AttrName, Type, Value}]

The purpose of this representation is to allow for generic code to operate on
data objects directly, e.g. GUI functions.

4.3.1 make_object(¥pe [, \alues))

Returns an #rdbms_obj{} record, either with default values, or with the
values specified in Values = [{AttrName, Value}]

4.3.2 malke_record(@bName | RdbmsOQObj)

Returns a record -- either a default record for a given table, or a record
generated from a given #rdbms_obj{}.

4.4 VALID PROPERTIES

Properties are given as {Key, Value} tuples, where the key consists of a
{Class : attr | rec | tab, Name, Property} tuple.

An alternative syntax is {{Class, Name}, [{Property, Value}]}.

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 8(14)

4.4.1 Attribute Properties
Property Values Description
type atom | list | tuple | integer|| Plain types
float | term |
string byte list (verified using
list_to_binary(Value))
text atom or string (byte list)
number integer or float
{record, Rec : atom()} The attributes for record Rc
must be defined in the
dictionary.
{compound, [SubAttr]} A set of values derived frop
attributes in a given recordj
See4.4.1
oid Automatic type, required,
defaults to a unique value
required true | false If true, null_value() is not
allowed
default true | false default value. If omitted,
null_value() is used.
bounds {inclusive,Min,Max} | Bounds checking - not
{exclusive, Min, Max} restricted to type
references [{Tab2, Attr2, Actions}] see 4.5.2
add_references [{Tab2,Attr2, Actions}] see 452
drop_references [{Tab2,Attr2}] see 4.5.2

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2

4.4.2

4.4.3

Record Properties

9(14)

Property

Values

Description

verify

F : function/1

F(Record) is called in
addition to the standard
verification, and is expecte
to return true | false.
See4.4.3

attributes

[AttrName : atom()]

Used to define records
which do not have their owr
table definition.

action_on_read

F : function/2

If specified,
mnesia:read({Tab, Rec})
will result in a call to
F(Tab, Rec). See 4.4.4

action_on_write

F : function/2

If specified,
mnesia:write(Rec) will
result in a call to F(Rec).
Seed.4d4.4

action_on_delete F : function/2

If specified,
mnesia:delete(Tab, Key)
will result in a call to
F(key, Key), and
mnesia:delete_object(Obj)
will result in a call to
F(obj, Obj). See 4.4.4

Table Properties

Property

Values

Description

action_on_read

F : function/2

If specified,
mnesia:read({Tab, Rec})
will result in a call to
F(Tab, Rec)

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 10(14)

Property Values Description

action_on_write| F : function/2 If specified,
mnesia:write(Rec) will
result in a call to F(Rec)

action_on_delete F : function/2 If specified,
mnesia:delete(Tab, Key)
will result in a call to
F(key, Key), and
mnesia:delete_object(Obj)
will result in a call to
F(obj, Obj)

4.5 ADVANCED PROPERTIES

451 Compound Attrilites

Compound attributes should not be listed in the ’attributes’ list, whether it be
the mnesia "attributes’ table property (for normal tables), or the rdbms
"attributes’ property (for custom record types).

Compound attributes can be used in the select() and fetch_objects()
functions, as well as in definitions of referential integrity.

452 Referential Intgrity

Referential integrity rules are stored as metadata in the following way:

{attr, {Tab, Attr}, [{Tab2, Attr2, RefActions}]},
where

Tab : the referencing table
Attr : the referencing attribute
Tab2 : the referenced table
Attr2 : the referenced attribute(s) -
atom() | {atom()} | function(Object,Value)

RefActions : {Match, DeleteAction : Action,
UpdateAction : Action}

Match : handling of null values - partial | full

Action : referential action - no_action | cascade |

set_default | set_null

An alternative syntax for RefActions is a {Key,Value} list:

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 11(14)

RefActions ::= [{match, partial | full} | {delete, Action} | {update,
Action}]

If any of the 'delete’ or 'update’ options are omitted, no_action is used as
default.

The 'match’ option only matters when the reference is made using a
compound attribute (where nulls are allowed):

. If omitted, a match is made if (a) any component of the
referencing attribute is null, or (b) the referencing attribute
equals the referenced attribute.

. If 'partial’ is specified, a match is made if (a) every component
of the referencing attribute is null, or (b) each non-null
component of the referencing attribute is equal to its
counterpart in the referenced attribute.

. If "full’ is specified, a match is made if (a) every component of
the referencing attribute is null, or (b) the referencing attribute
equals the referenced attribute.

References can also be added to existing tables using the option
{{attr,{Tab,Attr},add_references},[{Tab2,Attr2,Actions}]}. This is useful
especially when tables are defined e.g. as callback functions from different
modules, and one does not wish to pre-declare references (rdbms will fail if
there are references pointing to non-existent tables.)

Dropping references can be done in a similar fashion using the option
{{attr,{Tab,Attr},drop_references},[{Tab2,Attr2}]}.

4521 Example of Referential Integrity

A common pattern is illustrated for edification: Given a ‘company’ table and
an 'employee’ table, we want to make sure that employees cannot be added
to a company that does not exist, and we want to make sure that when a record
is deleted from the 'company’ table, all related employee records are also
deleted.

Table attributes:

company: [name, address, org_code]
employee: [name, company, position, age, address]

We want to link company.name and employee.company two ways, with
different semantics depending on whether we are operating on the ‘company’
or onthe 'employee’ table. In both directions, the 'match’ option is irrelevant,
as we are not dealing with compound attributes. The default value for 'match’
is 'full’.

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 12(14)

. When creating a new 'company’ record, we do not want to
enforce any check against the ‘'employee’ table
(update: ignore).

. When deleting a’company’ record, we want to delete all related
'employee’ recordsdelete: cascade
. When creating a new 'employee’ record, we want to check

whether there is a corresponding 'company’ record
(update: no_action.
. When deleting an 'employee’ record, we do not want to enforce
any checks agains the ‘company’ table
(delete: ignore.

In other words, we arrive at the following referential attributes:

company: {{attr,{company,name},references},
[{employee, company, {full,cascade,ignore}}]}
employee: {{attr{employee,company},references},

[{company, name, {full,ignore,no_action}}]}

453 Verification Functions

Verification functions are not allowed to modify the object being verified, and
can only return 'true’ or 'false’. They should avoid operations which have
side-effects, since a mnesia transaction can be restarted.

45.4 Custom Access Functions

The following access functions can be specified for a table:

. {action_on_read, function/1}
. {action_on_write, function/2}
. {action_on_delete, function/2}

Since these functions are expected to have side-effects, it may be necessary
to register a hook for committing or undoing the effect of the functions. This
can be done with the functions:

rdbms:register_commit_action(F)
. rdbms:register_rollback_action(F)

More than one action of each type can be registered, and they will be
forgotten after the completion of a transaction. The actions are called in LIFO
(last in, first out) ordeafter commit/rollback. No attempt is made to catch
exits.

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 13(14)

455 Example

Datalnit methods for tables dpLmTable and egm_dp_addr_table:

init_tables()->
Nodes = mnesia:table_info(schema, disc_copies),
catch begin
create_table(dpLmTable,
[{disc_copies, Nodes},
{snmp, [{key, {integer, integer, integer}}]},
{attributes, record_info(attrs, dpLmTable)}]),
create_table(eqm_dp_addr_table,
[{disc_copies, Nodes},
{attributes, record_info(attrs, eqm_dp_addr_table)}])
end.

create_table(Name, Attribs) ->
case mnesia:create_table(Name, Attribs) of
{atomic, _}->
ok;
{aborted, Reason} ->
throw({error, {Name, Reason}})
end.

init_data()->
Props =
{ {attr, {dpLmTable, dpLmKey}, type}, tuple },
{ {attr, {dpLmTable, dpLm}, type}, string },
{ {attr, {dpLmTable, dpLmRowStatus}, type}, integer },

{ {attr, {egm_dp_addr_table, dp_id}, type}, {record, dp_id} },
{ {attr, {egm_dp_addr_table, dp_address}, type}, tuple },

% definition of the record dp_id

{ {record, dp_id, attrs}, record_info(attrs, dp_id)},

{ {attr, subrack_no, type}, integer },

{ {attr, em_slot_no, type}, integer },

{ {attr, piu_slot_ no, type}, integer },

{ {attr, local_dp_no, type}, integer }],
rdbms:add_properties(Props).

Note thatattrs does not need to be specified for records which correspond to

a Mnesia table, since this information is already stored in the Mnesia schema.
Only use this property when defining records which do not correspond to a

Mnesia table.

The type and the default value have to be specified since Mnesia don’t have
that information.

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

ERICSSON 2 14(14)

4.6 REQUIRED FILES
. rdbms.beam
5 TERMINOLOGY

/home/etxuwig/work/erlang/open_source/contribs/rdbms-1.5/doc/rdbms.fm

	Contents Page
	2 Reader’s Guidelines
	3 Introduction
	4.1 Central Functions
	4.1.1 add_properties(Properties)
	4.1.2 do_add_properties(Properties [, Table])
	4.1.3 activity(Fun)
	4.1.4 create_table(Name, Options)
	4.1.5 do_create_table(Name, Options)
	4.1.6 delete_table(Name)
	4.1.7 do_delete_table(Name)

	4.2 Helper Functions
	4.2.1 select(Table, Attribute, Value, SelectAttrs)
	4.2.2 fetch_objects(Table, Attribute, Value)
	4.2.3 null_value()
	4.2.4 attributes(Table)
	4.2.5 all_attributes(Table)
	4.2.6 attribute(Pos, Table)
	4.2.7 position(AttrName, Table)
	4.2.8 type(attr, Attribute)
	4.2.9 default(attr, Attribute)
	4.2.10 default(record, Table)
	4.2.11 required(attr, Attr)
	4.2.12 bounds(attr, Attr)

	4.3 The #RDBMS_OBJ{} Record
	4.3.1 make_object(Type [, Values])
	4.3.2 make_record(TabName | RdbmsObj)

	4.4 Valid Properties
	4.4.1 Attribute Properties
	4.4.2 Record Properties
	4.4.3 Table Properties

	4.5 Advanced Properties
	4.5.1 Compound Attributes
	4.5.2 Referential Integrity
	4.5.3 Verification Functions
	4.5.4 Custom Access Functions

	4.6 Required Files

	5 Terminology

