
FIFO Run-to-completion Event-based Programming
Considered Harmful

Structured Network
Programming

EUC 2005
10 November 2005

Ulf Wiger
Senior Software Architect
Ericsson AB, IMS Gateways
<ulf.wiger@ericsson.com>

Presenter�
Presentation Notes�
There are speaker notes for some slides, but not all... yet.�

mailto:ulf.wiger@ericsson.com

Trend: monoliths ⇒

networks of loosely
coupled components.

• ⇒

stateful multi-way communication,
delay issues and partial system failures

• No common insight yet into how this affects
SW complexity (suspect that most people
think it simplifies things...)

P-CSCF

IM Subsystem

CSCF
MGCF HSS

Cx

IP Multimedia Networks

IMS-
MGW

PSTN

Mn

Mb

Mg

Mm

MRFP

Mb

Mr

Mb

Legacy mobile
signalling Networks

CSCF

Mw

Mw

Gm

BGCF Mj
Mi

BGCF

Mk Mk

C, D,
Gc, Gr

UE

Mb

Mb

Mb

MRFC

SLF Dx

Mp

PSTN

PSTN

Gq

http://www.3gpp.org/ftp/Specs/archive/23_series/23.002/

http://www.3gpp.org/ftp/Specs/archive/23_series/23.002/
http://www.3gpp.org/ftp/Specs/archive/23_series/23.002/

Claims

1. Ability to filter messages with implicit
buffering (”selective receive”) is vital for
proper state encapsulation.

• Otherwise, complexity explosion is inevitable
(in certain situations.)

2. Inline selective receive keeps the logical
flow intact – no need to maintain your
own ”call stack”.

(1) is more important than (2).

The ability to implement
complex state machines well
will most likely become a
key competitive edge.

The ability to implement
complex state machines well
will most likely become a
key competitive edge.

Example Scenario

• Each ”session” is
represented by one or
more stateful
processes (as in CSP)

• Each control process
interacts with multiple
uncoordinated
message sources

• Message sequences
may (and invariably
will) interleave

A B

Resources

Control/Charging, ...

A = originating side
B = terminating side

Traditional ”Half-Call” model

FIFO, Run-To-Completion (RTC) semantics:

• Thread of control owned by central event loop
• For each message, an associated method is called
• The method executes, then returns control to the

main loop
• Typically, the event loop dispatches messages for

multiple ”process” instances
=> an instance may never block.

• Examples: UML, common C++ pattern, OHaskell

Selective Receive semantics

• Each process instance specifies a subset of
messages that may trigger method dispatch
at any given time

• If the process owns the thread of control,
this is done in a blocking ”system call” (e.g.
the ’receive ... end’ language construct in
Erlang, or the select() function in UNIX.

Selective receive is not a new concept

• The select() system call first appeared in 4.2BSD
1982
– Allowed for blocking wait on a set of file descriptors.
– (Needs to be coupled with e.g. getmsg() in order to

fetch the message.)
– Now supported by all unices.

• MPI* has API support for blocking selective
receive.

• Erlang was first presented in 1987.

* http://www-unix.mcs.anl.gov/mpi/

http://www-unix.mcs.anl.gov/mpi/

Asynchronous Programming still dominates
– why?

• Synchronous programming is considered
slow.

• Reasoning about event-based programming
seems easier.

• Easy to build a fast, simple event-based
prototype.

• It’s not clear what you give up by not
programming synchronously!

• (and blocking RPC is not the whole secret –
selective receive is the powerful enabler.)

Presenter�
Presentation Notes�
Here we throw in the terms ”synchronous programming” and ”asynchronous programming”. An explanation is in order:

With “synchronous programming” is often meant using blocking remote procedure calls (RPC). Experience shows that this often leads to delays and poor performance.

“Asynchronous programming” seems to solve the performance problem, since one never blocks (and there’s reason to expect good cache locality.)

In the Hard Real-time domain, asynchronous programming is favoured – to a great extent because it is easier to reason about (assuming that the problem is “simple” enough that it’s possible to conduct global reasoning about it.) It is well known in the hard real-time community that the modeling concepts used do not scale well in terms of complexity, but in this particular domain, being able to guarantee “liveliness” is a more important problem. When dealing with Soft Real-time, it’s exactly the other way around: guaranteeing liveliness is not a requirement (the system usually needs to be subjectively perceived as “responsive”), whereas dealing with complexity is one of the major challenges.

We should make the point to clearly separate the notion of “selective receive” from that of “synchronous programming”. Some form of selective receive semantics is necessary in order to implement a true remote procedure call, but in many cases, this is hidden in some complex library and not made available as a programming construct in its own right (c.f. CORBA, COM et al). UML 2.0 introduces a SynchronousRequest primitive – essentially a blocking RPC – but you can still not use selective receive semantics in UML state machines.

(Actually, the UML specification is extremely complex, and most things are possible, even if not obvious. There is a ‘deferrableEvent’ attribute which can be set for an event in a given state. If there is no matching trigger for a deferrableEvent, the event is kept in the message queue until it is no longer deferrable – which means it is either discarded or handled in some other state. Rational RoseRT does not support this part of the UML specification, and instead forces the programmer to explicitly defer/recall events.)

Erlang, Concurrent Haskell etc. provide mechanisms for selective receive, and using these mechanisms, the programmer can quite easily model different types of RPC call using selective receive. Thus, we name selective receive as the powerful enabler.

To my knowledge, there are very few, if any, books that clearly explain the differences outlined in this presentation. In addition, CS students are not exposed to these issues. That selective receive is a powerful construct is well known, but specifically how much it improves matters of complex state machine design does not seem to be well known.

A common reaction, when the choice of an asynchronous programming model is questioned for a particular problem, is: “how difficult can it be?”. We will find out shortly...�

Programming Experiment

• Demo system used in
Ericsson’s Introductory
Erlang Course
(assignment: write a
control program for a
POTS subscriber loop)

• We will re-write the
control loop using
different semantics.

• Note well: we don’t
handle errors in our
example (usually the most
complex part.) Demo...Demo...

”POTS”: Plain Ordinary
Telephony System –
Trivial schoolbook
example of telephony
(as simple as it gets)

start() -> idle().

idle() ->
receive

{?lim, offhook} ->
lim:start_tone(dial),
getting_first_digit();

{?lim, {digit, _Digit}} ->
idle();

{?hc, {request_connection, Pid}} ->
Pid ! {?hc, {accept, self()}},
lim:start_ringing(),
ringing_B_side(Pid);

Other ->
io:format("Got unknown message: ~p~n", [Other]),
idle()

end.

POTS Control Loop – Original Impl. (1/3)

inline selective receiveinline selective receive

Synchronous HW controlSynchronous HW control

lim:start_tone(dial),

start_tone(Tone)->
call({start_tone, Tone}).

call(Request) ->
Ref = make_ref(),
lim ! {request, Request, Ref, self()},
receive

{?lim, Ref, {_ReplyTag, Reply}} ->
Reply

end.

start_tone(Tone)->
call({start_tone, Tone}).

call(Request) ->
Ref = make_ref(),
lim ! {request, Request, Ref, self()},
receive

{?lim, Ref, {_ReplyTag, Reply}} ->
Reply

end.

Presenter�
Presentation Notes�
The helper function call(Request), which is used to implement start_tone(Tone), is a common client-server request pattern. We can see in this example that the call() function is an encapsulated sub-state in a hierarchical state machine.

The implicit semantics of the receive ... end is that messages not matching the pattern(s) are buffered – they remain in the message queue and are not visible to the call() function. Furthermore, the call() function introduces one new outgoing message and one new incoming message; these messages are not visible to the top-level state machine (the caller). We call these messages ’local’ messages, in the same sense that the function may have local variables.

The receive ... end construct can be extended with a timeout expression:

receive

 Pattern1 ->

 ...;

 PatternN ->

 ...

 after Timeout ->

 ...

end

The observant reader will quickly deduce that it is possible for local messages to leak out of the function: if the server does not respond quickly enough, the receive ... end clause might time out, and the function return with an error message. In this case, the reply message might eventually arrive when the program is in another state. This is a peculiarity of the Erlang model of pattern matching on a common message queue.

In practice, such a delayed reply message will most likely be discarded in some top-level state (there are normally one or more states that clean out unrecognized messages). Given this particular solution, there are no guarantees that accidental leaking will not lead to unexpected behaviour, although a modest amount of discipline on behalf of the programmer is usually sufficient to avoid such unpleasantries.

Looking beyond the particulars of the present implementation of the example, we should probably look for a way to introduce scoping rules on messages. One might say that the ‘scope’ of the messages {request, Request, Ref, ...} and {?lim, Ref, ...} above is local to the function call(Request), even though this property is not guaranteed and does not hold in all cases.

It should be noted that the programming language Haskell is rather special in that a communication channel has the same scoping rules as any variable (a channel is bound to a variable, using something called an “IO monad”.) For a transition state to listen to a common signalling channel, for example, the top-level state machine would then have to pass the signalling channel as a function argument to the function representing the transition state. This appears to be a quite consistent and safe way to handle the problem.

�

POTS Control Loop – Original Impl. (2/3)

getting_first_digit() ->
receive
{?lim, onhook} ->

lim:stop_tone(),
idle();

{?lim, {digit, Digit}} ->
lim:stop_tone(),
getting_number(Digit,

number:analyse(Digit, number:valid_sequences()));
{?hc, {request_connection, Pid}} ->

Pid ! {?hc, {reject, self()}},
getting_first_digit();

Other ->
io:format(”Unknown message ...: ~p~n", [Other]),
getting_first_digit()

end.

POTS Control Loop – Original Impl. (3/3)

calling_B(PidB) ->
receive
{?lim, onhook} ->

idle();
{?lim, {digit, _Digit}} ->

calling_B(PidB);
{?hc, {accept, PidB}} ->

lim:start_tone(ring),
ringing_A_side(PidB);

{?hc, {reject, PidB}} ->
lim:start_tone(busy),
wait_on_hook(true);

{?hc, {request_connection, Pid}} ->
Pid ! {?hc, {reject, self()}},
calling_B(PidB);

Other ->
io:format("Got unknown message...: ~p~n",[...]),
calling_B(PidB)

end.
...

Experiment:
Rewrite the program using

an event-based model

Event-based vsn, blocking HW control (1/3)

%% simple main event loop with FIFO semantics
event_loop(M, S) ->

receive
{From, Event} ->

dispatch(From, Event, M, S);
{From, Ref, Event} ->

dispatch(From, Event, M, S);
Other ->

io:format(”Unknown msg: ~p~n", [Other]),
exit({unknown_msg, Other})

end.

dispatch(From, Event, M, S) when atom(Event) ->
{ok, NewState} = M:Event(From, S),
event_loop(M, NewState);

dispatch(From, {Event, Arg}, M, S) ->
{ok, NewState} = M:Event(From, Arg, S),
event_loop(M, NewState).

Event-based vsn, blocking HW control (2/3)

offhook(?lim, #s{state = idle} = S) ->
lim:start_tone(dial),
{ok, S#s{state = getting_first_digit}};

offhook(?lim, #s{state = {ringing_B_side, PidA}} = S) ->
lim:stop_ringing(),
PidA ! {?hc, {connect, self()}},
{ok, S#s{state = {speech, PidA}}};

offhook(From, S) ->
io:format(”Unknown message in ~p: ~p~n",

[S#s.state, {From, offhook}]),
{ok, S}.

Synchronous HW controlSynchronous HW control

Event-based vsn, blocking HW control (3/3)

onhook(?lim, #s{state = getting_first_digit} = S) ->
lim:stop_tone(),
{ok, S#s{state = idle}};

onhook(?lim,#s{state={getting_number,{_Num,_Valid}}} = S) ->
{ok, S#s{state = idle}};

onhook(?lim, #s{state = {calling_B, _PidB}} = S) ->
{ok, S#s{state = idle}};

onhook(?lim, #s{state = {ringing_A_side, PidB}} = S) ->
PidB ! {?hc, {cancel, self()}},
lim:stop_tone(),
{ok, S#s{state = idle}};

onhook(?lim, #s{state = {speech, OtherPid}} = S) ->
lim:disconnect_from(OtherPid),
OtherPid ! {?hc, {cancel, self()}},
{ok, S#s{state = idle}};

... A bit awkward
(FSM programming ”inside-out”),
but manageable.

A bit awkward
(FSM programming ”inside-out”),
but manageable.

Add the non-blocking restriction

(first, naive, implementation)

Now, assume we are not allowed to block
(common restriction, 1/3)

offhook(?lim, #s{state = idle} = S) ->
lim_asynch:start_tone(dial),
{ok, S#s{state = {{await_tone_start,dial},

getting_first_digit}}};
offhook(?lim, #s{state = {ringing_B_side, PidA}} = S) ->

lim_asynch:stop_ringing(),
PidA ! {?hc, {connect, self()}},
{ok, S#s{state = {await_ringing_stop, {speech, PidA}}}};

offhook(?lim, S) ->
io:format("Got unknown message in ~p: ~p~n",

[S#s.state, {lim, offhook}]),
{ok, S}.

Asynchronous HW controlAsynchronous HW control

... not allowed to block (2/3)

digit(?lim, Digit, #s{state = getting_first_digit} = S) ->
%% CHALLENGE: Since stop_tone() is no longer a synchronous
%% operation, continuing with number analysis is no longer
%% straightforward. We can either continue and somehow log that
%% we are waiting for a message, or we enter the state await_tone_stop
%% and note that we have more processing to do. The former approach
%% would get us into trouble if an invalid digit is pressed, since
%% we then need to start a fault tone. The latter approach seems more
%% clear and consistent. NOTE: we must remember to also write
%% corresponding code in stop_tone_reply().
lim_asynch:stop_tone(),
{ok, S#s{state = {await_tone_stop,

{continue, fun(S1) ->
f_first_digit(Digit, S1)

end}}}};

...not allowed to block (3/3)

start_tone_reply(?lim, {Type, yes},
#s{state = {{await_tone_start, Type}, NextState}} = S) ->
{ok, S#s{state = NextState}}.

stop_tone_reply(?lim,_,#s{state={await_tone_stop,Next}} =S) ->
%% CHALLENGE: Must remember to check NextState. An alternative would
%% be to always perform this check on return, but this would increase
%% the overhead and increase the risk of entering infinite loops.
case NextState of

{continue, Cont} when function(Cont) ->
Cont(S#s{state = Next});

_ ->
{ok, S#s{state = Next}}

end.

Quite tricky, but the program
still isn’t timing-safe. (Demo...)

Quite tricky, but the program
still isn’t timing-safe. (Demo...)

Presenter�
Presentation Notes�
In the demo, we exercise the program with a delay added to the responses from the hardware API. This causes messages to arrive out of order (if we for example lift the handset and replace it before the ‘start_tone’ response arrives), and we can quite easily cause the program to hang.

Running the previous two programs with the same delay simply causes things to happen more slowly, but all actions are still performed in the right sequence. We deduce that the first two programs are timing-safe, while the last one is not.

Studying the program, we quickly find out that we have missed a wide range of message sequences, and that they all must be represented in the program – whether we choose to ignore or buffer a given message, we must provide a handler for it.

It should be noted that e.g. UML has the default semantics that if a handler is missing for a certain state-event combination, the message is discarded. However, in complex state machines, this is hardly ever useful: only the top-level states have the authority to discard messages; transition states (sub-states) can never be allowed to discard unknown messages.

Sooner or later, we realise that the only way to get a handle on the complexity is to draw a state event matrix (next slide.)�

idle getting
first
digit

getting
number

calling
B

ringing
A-side

speech ringing B-
side

wait on-
hook

await
tone start

await
tone stop

await
ringing
start

await
ringing
stop

await pid
with
telnr

await
conn-
ect

await dis-
connect

offhook O X X X X X O X X X D X X X X

onhook X O O O O O O O D D D D D D D

digit — O O — — — — — D D D D D D —

connect — — — — O — — — D X X X X X X

request
connection

O O O O O O O O O O O O O O O

reject — — — O — — — — X X X X X X X

accept — — — O — — — — X X X X X X X

cancel — — — — — — — — X D D D X D X

start tone reply X X X X X X X X O X X X X X X

stop tone reply X X X X X X X X X O X X X X X

start ringing
reply

X X X X X X X X X X O X X X X

stop ringing
reply

X X X X X X X X X X X O X X X

pid with telnr
reply

X X X X X X X X X X X X O X X

connect reply X X X X X X X X X X X X X O X

disconnect
reply

X X X X X X X X X X X X X X O

FIFO semantics,
asynchronous
hardware APIGlobal State-Event Matrix

Presenter�
Presentation Notes�
In the state-event matrix above, we have colored blue the original states and events, while the events and states introduced by the non-blocking requirement are colored red. The symbols mean:

“D” – defer message

“o” – handle message

“X” – probably raise an exception

“-” – discard

Careful study of the matrix shows that we cannot easily determine what to do in each cell without knowing the history that got us there and the set of features we want to support. For example, whether or not we should buffer digits while in the ‘await_ringing_stop’ state depends on whether we are supposed to handle digits in the ‘speech’ state. Ideally, the transition state ‘await_ringing_stop’ should not have to have any knowledge of this. Yet, buffered digits should be consumed at some point.�

Apparent Problems

• The whole matrix needs to be revisited if
messages/features are added or removed.

• What to do in each cell is by no means
obvious – depends on history.

• What to do when an unexpected message
arrives in a transition state is practically
never specified (we must invent some
reasonable response.)

• Code reuse becomes practically impossible.

Presenter�
Presentation Notes�
Conclusion: the only way to avoid the complexity explosion is to make sure that messages that are not within scope of a given state are abstracted away from the program.

�

Non-blocking version, using message filter
(1/2)

digit(?lim, Digit, #s{state = getting_first_digit} = S) ->
%% CHALLENGE: ...<same as before>
Ref = lim_asynch:stop_tone(),
{ok, S#s{state = {await_tone_stop,

{continue, fun(S1) ->
f_first_digit(Digit, S1)

end}}},
#recv{lim = Ref, _ = false}};

The continuations are still
necessary, but our sub-states are
now insensitive to timing
variations.

The continuations are still
necessary, but our sub-states are
now insensitive to timing
variations.

Accept only msgs tagged with Ref,
coming from ’lim’;
buffer everything else.

Accept only msgs tagged with Ref,
coming from ’lim’;
buffer everything else.

Non-blocking version, using message filter
(2/2, the main event loop)

event_loop(M, S, Recv) ->
receive

{From, Event} when element(From, Recv) == [] ->
dispatch(From, Event, M, S);

{From, Ref, Event} when element(From, Recv) == Ref ->
dispatch(From, Event, M, S);

{From, Ref, Event} when element(From, Recv) == [] ->
dispatch(From, Event, M, S)

end.

dispatch(From, Event, M, S) when atom(Event) ->
handle(M:Event(From, S), M);

dispatch(From, {Event, Arg}, M, S) ->
handle(M:Event(From, Arg, S), M).

handle({ok, NewState}, M) ->
event_loop(M, NewState);

handle({ok, NewState, Recv}, M) ->
event_loop(M, NewState, Recv).

Properties of filtered event loop

• Can be implemented in basically any
language (e.g. extending existing C++
framework.)

• Solves the complexity explosion problem.
• Doesn’t eliminate the need for continuations

(this affects readability – not complexity)

Real-Life Example

%% We are waiting to send a StopTone while processing a StartTone and now
%% we get a ReleasePath. Reset tone type to off and override StopTone
%% with ReleasePath since this will both clear the tone and remove connection.
cm_msg([?CM_RELEASE_PATH,TransId,[SessionId|Data]] = NewMsg,

HcId, #mlgCmConnTable{
sessionId = SessionId,
sendMsg = ?CM_START_TONE_RES,
newMsg = {cm_msg,

[?CM_STOP_TONE|Msg]}} = HcRec,
TraceLog) ->

NewHcRec = HcRec#mlgCmConnTable{
newMsg = {cm_msg, NewMsg},

toneType = off},
NewLog = ?NewLog({cm_rp, 10}, {pend, pend}, undefined),
mlgCmHccLib:end_session(

pending, NewHcRec, [NewLog | TraceLog], override);

Code extract from the AXD301-based ”Mediation Logic” (ML)

Real-Life Example

%% If we are pending a Notify Released event for a Switch Device, override
%% with ReleasePath.
cm_msg([?CM_RELEASE_PATH,TransId,[SessionId|Data]] = NewMsg,

HcId,
#mlgCmConnTable{

sessionId = SessionId,
newMsg = {gcp_msg, [notify, GcpData]},
deviceType = switchDevice,
path2Info = undefined} = HcRec,

TraceLog) ->
NewHcRec = HcRec#mlgCmConnTable{newMsg= {cm_msg, NewMsg}},
NewLog = ?NewLog({cm_rp, 20}, {pend, pend}, undefined),
mlgCmHccLib:end_session(

pending, NewHcRec, [NewLog | TraceLog], override);

Code extract from the AXD301-based ”Mediation Logic” (ML)

Real-Life Example

%% Getting a ReleasePath when pending a Notify Released event is a bit
%% complicated. We need to check for which path the ReleasePath is for and
%% for which path the notify is for. If they are for different paths we are
%% in a dilemma since we only can be in pending for one of them. As a simple
%% way out we just treat this as an abnormal release for now.
cm_msg([?CM_RELEASE_PATH,TransId,[SessionId|Data]] = NewMsg,

HcId,
#mlgCmConnTable{

sessionId = SessionId,
newMsg = {gcp_msg, [notify, GcpData]},
deviceType = switchDevice} = HcRec,

TraceLog) ->
mlgCmHcc:send_cm_msg(?CM_RELEASE_PATH_RES,

?MSG_SUCCESSFUL, TransId, SessionId),
NewHcRec = HcRec#mlgCmConnTable{newMsg = abnormal_rel},
NewLog = ?NewLog({cm_rp, 30}, {pend, pend}, undefined),
mlgCmHccLib:end_session(pending, NewHcRec,

[NewLog | TraceLog], override);

Code extract from the AXD301-based ”Mediation Logic” (ML)

Observations

• Practically impossible to understand the
code without the comments

• Lots of checking for each message to
determine exact context
(basically, a user-level call stack.)

• A nightmare to test and reason about
• (The production code has now been re-

written and greatly simplified.)

Alternative execution paths
depending on context

Alternative execution paths
depending on context

Action procedures:
N/A Not applicable
x No action, ignore the error
y Return protocol error,

remain in same state
A Anomaly, log

ML State-Event Matrix (1/4)

ML State-Event Matrix (2/4)

ML State-Event Matrix (3/4)

ML State-Event Matrix (4/4)

Observations...

Observations re. ML

• Still, only the external protocol is handled this
way (the state machine uses synchronous calls
towards internal APIs) – otherwise, it would really
be bad.

• This is the semantics offered by UML(*) as well
(UML gives lots of abstraction support, but only
for the sequential parts – not for state machines.)

• This seems analogous to
– Dijkstra’s “Goto considered harmful”, and
– local vs. global variables.

(*) Only partly true – see ’deferrable event’, UML 1.5, part 2, pp 147

Presenter�
Presentation Notes�
A clarification on the semantics of UML:

UML specifies a central event loop (per ”capsule”), which in practice uses FIFO message reception semantics (strictly speaking, the UML spec leaves the issue of message reception order or prioritization ’undefined’. In practice, this means FIFO.)

A capsule may declare “ports” to the outside world (e.g. other capsules). In each state, the programmer declares on which ports messages are expected to arrive, and assigns triggers to all expected messages.

The UML specification (since 1.3 or 1.4) specifies an attribute, ’deferrableEvent’, which allows a message to be automatically buffered if a trigger doesn’t fire given the current state. Rational RoseRT, unfortunately, doesn’t support this behaviour. Rather, unexpected messages are by default discarded. When we are in a sub-state, we simply cannot determine which unknown messages can be discarded (given a reasonably complex state machine), so we must take care of all messages. Those that we do not want to handle can be explicitly deferred (using a ‘defer’ instruction). Deferred messages must be explicitly recalled (using a ‘recall’ instruction). In other words, RoseRT forces the programmer to consider all messages that can possibly arrive, given each state. The only support given is a standard solution for the defer/recall gymnastics that is a natural result of revealing unknown messages to the programmer in the first place.

One problem with UML in general is that it describes just about every conceivable alternative for state machine design with no expressed preference. Not only does this make the specification almost impossible to understand fully. It also gives the programmer practically no guidance regarding design choices. A few passages, e.g. warning about combination effects when using both concurrent sub-states and deferrable events, indicate that some major design decisions are needed before development starts.

�

Questions?

	FIFO Run-to-completion Event-based Programming Considered Harmful
	Trend: monoliths  networks of loosely coupled components.
	Claims
	Example Scenario
	FIFO, Run-To-Completion (RTC) semantics:
	Selective Receive semantics
	Selective receive is not a new concept
	Asynchronous Programming still dominates – why?
	Programming Experiment
	POTS Control Loop – Original Impl. (1/3)
	POTS Control Loop – Original Impl. (2/3)
	POTS Control Loop – Original Impl. (3/3)
	Experiment:�Rewrite the program using �an event-based model
	Event-based vsn, blocking HW control (1/3)
	Event-based vsn, blocking HW control (2/3)
	Event-based vsn, blocking HW control (3/3)
	Add the non-blocking restriction
	Now, assume we are not allowed to block (common restriction, 1/3)
	... not allowed to block (2/3)
	...not allowed to block (3/3)
	Global State-Event Matrix
	Apparent Problems
	Non-blocking version, using message filter (1/2)
	Non-blocking version, using message filter (2/2, the main event loop)
	Properties of filtered event loop
	Real-Life Example
	Real-Life Example
	Real-Life Example
	Observations
	ML State-Event Matrix (1/4)
	ML State-Event Matrix (2/4)
	ML State-Event Matrix (3/4)
	ML State-Event Matrix (4/4)
	Observations re. ML
	Questions?

