
Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 1

Erlang Programming
for Multi-core

Ulf Wiger
Ericsson AB

ulf@wiger.net
http://www.protest-project.eu/

The purpose of this presentation is to give a hands-on tutorial on Erlang
programming for multi-core.

Since providing the audience with a multi-core computer each seems
problematic, and since the idea of Erlang programming for multi-core is
that your programs should run unchanged with good characteristics, a
regular tutorial seems impractical.

Instead, this is a fairly detailed briefing with some code examples intended
to illustrate which things one needs to consider, followed by a presentation
of an interesting technique for testing and debugging programs on multi-
core.

The presentation is part of the EU-sponsored research project ProTest.
The intention is to make the QuickCheck functionality shown in this
presentation (or something similar) commercially available.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 2

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-162

Outline

� Background

� Industrial example

� Programming examples

� Some benchmarks

� Testing and debugging

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 3

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-163

Enter the age of multicore

Fraction of chip reachable within one clock cycle

[source] Erik Hagersten (http://www.sics.se/files/projects/multicore/day2007/ErikHintro.pdf)

The picture is borrowed from dr. Joe Armstrong, who borrowed it from
prof. Erik Hagersten.

Presumably, the people attending this workshop are aware of the reasons
behing the multi-core trend, and no time will be spent delving into that
here.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 4

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-164

Industry’s dilemma

� The shift to multicore is inevitable.

� Parallelizing legacy C (and Java) code
is very hard.

� Debugging parallelized C (and Java)
is even harder.

� ”...but what choice do we have?”

This is my own executive summary of the discussions so far on multi-core,
at least in industry.

A possible result of this could be that the trend towards multi-core is
slowed, since most legacy software is unable to take advantage of more
than 2 or 4 cores.

I’ve often heard the comment ”what choice do we have?”, by people who
seem either unaware of the existence of alternative technologies, or
refuse to regard them as commercially viable. Of course, one should not
underestimate the risks (both technical and commercial) of rewriting an
established product from scratch, so in many cases, this may well be the
truth – at least in the short term.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 5

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-165

Erlang and multicore

� Erlang was designed for
– Share-nothing concurrency

– Asynchronous message passing

– Distribution transparency

– Fault-tolerance (”robustness in the presence of SW errors”)

� No mutexes, no transaction memory
– Great for multicore – for some types of problem

– Inadequate for some others

– Erlang’s domain focus strongly affects
how it approaches multicore

� But the Erlang VM of course uses shared memory
and POSIX threads...

In this presentation we will focus on Erlang and multi-core.

Erlang has many traits that make it nearly ideal for multi-core, at least for a certain class of
problems.

Erlang was originally designed for telecommunications software, where distributed programming
has been the norm ever since the 1980s. Telecoms software also has a great deal of natural
concurrency. Erlang processes were designed to have the right kind of concurrency for (the logical
representation of) a telephone call. In fact, one early prototype used Parlog, which was deemed to
be much too parallel; and the concurrency couldn’t be controlled sufficiently for the problem
domain.

It follows that Erlang’s process model is too heavyweight for some forms of parallelism (e.g. the
ones for which Parlog would be ”just right”).

Erlang has no shared memory. The main reason for this was reliability (one process cannot corrupt
the memory of another), but also because distribution transparency was desired, and processes
cannot share memory across a network link.

Fault tolerance was also an important requirement. The philosophy was that errors cannot be
entirely eliminated, so the software must be able to withstand errors even in the field.

The fault-tolerance and distribution transparency requirements led naturally to an asynchronous
message-passing model.

When looking at the challenges for multi-core chip designers, it seems that Erlang’s asynchronous
message-passing share-nothing model is quite attractive, especially for many-core (>> 4 cores).
However, mainstream chips are naturally focused mainly on performing well for legacy software,
which largely is either single-threaded, or relies on a POSIX shared-memory thread model. Thus,
neither the CPUs nor the common operating systems can be expected to offer instruction sets and
frameworks for message-passing concurrency at the chip level.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 6

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-166

Erlang on multicore

� SMP prototype ‘97,
First OTP release May ‘06.

� Mid -06 we ran a benchmark
mimicking call handling
(axdmark) on the (experimental)
SMP emulator. Observed
speedup/core: 0.95

� First Ericsson product (TGC)
released on SMP Erlang
in Q207.

”Big bang” benchmark on Sunfire T2000

Simultaneous processes

http://www.franklinmint.fm/blog/archives/000792.html

16 schedulers

1 scheduler

The first SMP experiments with Erlang were made in 1997, as a MSc
thesis project by Pekka Hedqvist (supervised by Tony Rogvall). It was a
success inasmuch as it showed that normal Erlang programs can scale
well with the help of SMP, but as the products using Erlang had no room
(literally) for the rather bulky SMP systems of that time, the work wasn’t
continued.

As the multi-core trend started picking up a little, the work was revived.
Tony Rogvall (then at Synapse) assisted in the beginning, and the first
SMP-capable Erlang/OTP version was released in May 2006. It was
considered experimental. Ericsson ran some benchmarks and ported a
commercial product to it (the main initial challenge was that this required
moving from a PowerPC architecture to AMD64). These experiments on
”real software” (including linked-in drivers etc.) led to several
improvements to the VM, and in the second quarter of 2007, we were able
to release our first commercial product using SMP Erlang.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 7

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-167

Case study: The Ericsson TGC

� Telephony Gateway Controller

� Mediates between legacy telephony and
multimedia networks.

� Hugely complex state machines
+ massive concurrency.

� Developed in Erlang.

� Multicore version shipped
to customer Q207.

� Porting from 1-core PPC to 2-core Intel
took < 1 man-year (including testing).

AXE

TGC

GWGW GW

The first commercial product using SMP Erlang (as far as we know) was
the Ericsson Telephony Gateway Controller. This product mediates
between legacy telephony networks and IP telephony, and contains some
frightningly complex state machines and massive concurrency. It is
required to have at least 99.999% availability (< 6 min/year downtime,
including maintenance and upgrades.) The work to port to SMP and verify
the TGC on dual-core AMD64 boards was less than one man-year in total
(not counting the amount of work put in by the Erlang/OTP team, of
course.) For a product of this complexity, this effort is almost negligible.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 8

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-168

TGC Results (top)

Tasks: 50 total, 2 running, 48 sleeping, 0 stopped, 0 zombie

Cpu0 : 62.5% us, 3.7% sy, 0.0% ni, 32.4% id, 0.0% wa, 0.0% hi, 1.3% si

Cpu1 : 36.1% us, 2.7% sy, 0.0% ni, 60.9% id, 0.0% wa, 0.0% hi, 0.3% si

Mem: 4092764k total, 459352k used, 3633412k free, 8196k buffers

Swap: 0k total, 0k used, 0k free, 215796k cached

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

1975 homer 25 0 2295m 192m 2144 S 99.9 4.8 179:40.46 beam.smp

1 root 16 0 664 244 208 S 0.0 0.0 0:01.50 init

2 root RT 0 0 0 0 S 0.0 0.0 0:00.02 migration/0

3 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/0

4 root RT 0 0 0 0 S 0.0 0.0 0:00.01 migration/1

5 root 34 19 0 0 0 S 0.0 0.0 0:00.00 ksoftirqd/1

This slide shows a snapshot of the Unix ”top” utility.

Highlighted are the load figures for the two CPUs, indicating a reasonably
(but not perfectly) even load, as well as the TIME column, just to show
that the system was indeed capable of running for a while.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 9

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-169

TGC Results (dtop)

ppb1_bs13-R3A@blade_ size 2345(131M, cpu% 107, procs 10371, runq 0 15:15:53

memory[kB]: proc 58223, atom 1768, bin 170, code 29772, ets 39215

pid name current msgq mem cpu

<0.5872.491 prfTarg (prfPrc:pinf/2) 0 2036 22

<0.18323.47 (erlang:apply/2) (gcpServ:recv1/3) 0 17 10

<0.18436.47 (erlang:apply/2) (gcpServ:recv1/3) 0 24 5

<0.1813.0> sysProc (gen_server:loop/6) 0 981 2

<0.27384.47 (pthTcpNetHandler:init/1) (gen_server:loop/6) 0 587 1

<0.18350.47 (erlang:apply/2) (gcpTransportProxy: 0 8 1

<0.1935.0> ccpcServer_n (gen_server:loop/6) 0 587 0

<0.18526.47 (erlang:apply/2) (gcpTransportProxy: 0 6 0

<0.1923.0> sbm (gen_server:loop/6) 0 1719 0

<0.3603.0> (erlang:apply/2) (gcpServ:recv1/3) 0 5 0

This slide shows a snapshot of the Erlang utility ”dtop” (modeled after
”top”).

Highlighted are the number of simultaneous processes (10 371), and the
length of the run queue (0). The run queue is a fairly reliable indicator of
how loaded the system is. If the system is not overloaded, the length of
the run queue is often zero, or close to zero.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 10

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1610

TGC results (performance)

3.17X
call/sec

1.55X
call/sec

0.4X
call/sec

AXD
CPB5

14X call/sec

7.6X call/sec

2.1X call/sec

AXD
CPB6

ISUP-ISUP /Intra
MGW

ISUP-ISUP /Inter
MGW

POTS-POTS
/AGW

Traffic
scenario

5.5X call/sec

3.6X call/sec

X call/sec

IS/GCP
1slot/board

7.7X call/sec

One core used

2.3X call/sec

One core used

IS/GEP
Dual core

One core
running

2slots/board

26X call/sec

13X call/sec
OTP R11_3

beta+patches

4.3X call/sec
OTP R11_3

beta+patches

IS/GEP
Dual core

Two cores
running

2slots/board

This table shows relative performance figures for the TGC.

The reference is a single-core PowerPC. The actual performance is not
revealed, but represented here as a factor of X.

The ”GEP” processor is a dual-core AMD64, so to get a fair comparison,
we ran the test using the non-SMP emulator on the GEP, using only a
single CPU. Then we used the SMP emulator and observed a significant
speedup.

The CPB5 and CPB6 boards are other single-core references. The CPB6
is roughly as fast as the AMD64 using non-SMP Erlang. This is roughly as
fast as we can make it go on a single-core, given the power and space
budget on the board.

The observed speedup going from single-core to dual-core was ca 1.7,
which must be seen as a very good result.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 11

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1611

Erlang SMP ”Credo”

� SMP should be transparent to the programmer in
much the same way as distribution is,

– I.e. you shouldn’t have to think about it

– ...but sometimes you must

� Use SMP mainly for stuff that
you’d make concurrent anyway.

It is important to understand that the Erlang approach to SMP is that
existing programs should benefit from multi-core unchanged, and that
programmers should not have to write special code for SMP scalability.

For one thing, this means that a tutorial on multi-core programming in
Erlang would amount to much the same as a basic Erlang programming
tutorial...

In the interest of time, I will skip the basic Erlang part (hoping that the
audience has assimilated that already, or is smart enough to follow
anyway), and focus on those aspects which are different about SMP
Erlang.

The basic philosophy of Erlang can be described as ”model naturally
concurrent activities, and create as many processes as your problem calls
for – no more, no less.”. We call this Concurrency-Oriented Programming
(COP), and it ows much to C.A.R. Hoare’s work on CSP.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 12

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1612

Programming Examples

Traditional implementation of lists:map/2:

map(F, L) ->
[F(X) || X <- L].

(Simple) SMP implementation: pmap/2:

pmap(F, L) ->
Parent = self(),
Pids = [spawn(fun() ->

Parent ! {self(),F(X)}
end) || X <- L],

[receive {Pid,Res} -> Res end || Pid <- Pids].

Not quite the same semantics...
Order: preserved
Exceptions: hangs

Let’s go through one programming example: parallelizing the map function.

This can actually be beneficial in many cases, if the work performed on each list element is
expensive enough.

The original implementation of lists:map/2 is

map(F, L) when is_function(F, 1), is_list(L) ->

[F(X) || X <- L].

(The actual implementation in lists.erl is a bit different, but it could look like this.)

The function body uses a list comprehension, which reads as: ”Return the list of F(X), where X is
taken from the list L.”

For example, lists:map(fun(X) -> X+1 end, [1,2,3]) returns [2,3,4].

In our first parallel map, we iterate throug the list L, and spawn a process for each element. Each
process will evaluate F(X) (with its specific value of X) and send the result back to the parent
process; after this, it dies, since there is nothing more to evaluate. The operation, expressed as a
list comprehension, will result in a list of process identifiers – one for each element in the list. The
parent process will then iterate through the list of Pids and receive the result messages, producing
a list of the evaluated result for each X. The result list will be in order, since the collection uses
”selective receive” for each Pid. No matter in which order the result messages arrive, the parent
process will match the result from the first Pid, and then the next, etc.

We thus preserve order, but there are other differences (other than that the whole map operation
may run faster or slower):

-If either application F(X) raises an exception, the operation will hang, since the parent process will
never receive a message.

-If the application F(X) has side-effects, or depends on the process environment (e.g. a mnesia
transaction or the process dictionary), the result of the map is undefined.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 13

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1613

More pmap alternatives

Catches errors and includes them in the map result:

pmap1(F, L) ->
Parent = self(),
Pids = [spawn(fun() ->

Parent ! {self(), catch F(X)catch F(X)catch F(X)catch F(X)}
end) || X <- L],

[receive {Pid,Res} -> Res end || Pid <- Pids].

We can try to fix our pmap so that it doesn’t hang if an evaluator process
crashes.

The simplest way is to insert a catch, i.e. Parent ! {self(), catch F(X)}.

This has the obvious drawback that the map operation, rather than failing
like the original map would, now includes error values in the list, leaving it
up to the programmer to sort things out.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 14

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1614

More pmap alternatives

Catches first error, terminates rest and raises exception:

pmap2(F, L) ->
await2(spawn_jobs(F, L)).

spawn_jobs(F, L) ->
Parent = self(),
[spawn(fun(X) -> Parent ! {self(),catch {ok,F(X)}catch {ok,F(X)}catch {ok,F(X)}catch {ok,F(X)}}
|| X <- L].

await2([H|T]) ->
receive

{H, {ok, Res}} -> [Res | await2(T)];
{H, {'EXIT',_} = Err} ->

[exit(Pid,kill) || Pid <- T],
[receive {P,_} -> ok after 0 -> ok end || P <- T],
erlang:error(Err)

end;
await2([]) -> [].

We amend the function some more, first changing the catch pattern so
that we can distinguish valid results from invalid results (using catch {ok,
F(X)}, which is an old Erlang trick).

In our collection function, we unwrap valid results. If we encounter an
invalid result, we send ’kill’ messages to the rest of the pids and raise an
exception. But we must also flush any results that may already have
arrived from the remaining processes.

(Later on in the presentation, we will learn that this is a dubious approach,
but based on what we know so far, it seems to work.)

At this point we’re beginning to suspect that there are other things we
haven’t considered. What if, for example, the evaluator processes are
killed by an exit message? (This would be silly, but can, and therefore
probably will, happen). If this happens, the catch is ineffective, and we’d
have to use a monitor to detect if the evaluator crashes.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 15

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1615

Pmap discussion

� Extra overhead for each function application:
– (spawn + msg send + msg receive + process exit)

� Erlang processes are reasonably lightweight
– But carry lots of debugging info etc.
– Message passing is (normally) copying

...worst case, flattening

� Measure to see if granularity is suitable

� Exception handling semantics force tradeoffs

� Preserving order is easy, but has a cost

� ...but map is inherently sequential!

� Use SMP mainly for naturally concurrent patterns

To summarize, we noticed that a naive parallelization of a sequential
function can be somewhat problematic. To go with the Erlang grain, we
really do need to consider the effect of exceptions, since Erlang relies
heavily on dynamic typing and run-time pattern-matching. Remember that
exceptions should be expected, and the software should know how to
react. Hanging forever is usually an unwanted result.

We know that our pmap doesn’t cover all aspects, but even so, we’ve
introduced considerable overhead – not just spawning processes and
sending messages, but also relying on selective receive to preserve order,
at quadratic complexity. We could do better, complexity-wise, by sorting
the results ourselves, but this would likely be slower for small lists, and
would of course complicate the implementation further.

Once we’re satisfied with the workings of our pmap, we need to measure
to see where the break-even point is between using the sequential map
and using our parallel one. We might decide that the overhead is too high
for a ”safe” pmap, and decide to go with a simpler version (perhaps we
”know” that there will be no exceptions).

In either case, parallelizing sequential operations isn’t as straightforward
as it may seem, and Erlang doesn’t always yield good result.

We remind ourselves that the idea behind SMP Erlang is to speed up
programs that are written in the traditional Erlang style.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 16

Benchmarks & Internals

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 17

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1617

non-SMP VM

Erlang VMErlang VMErlang VMErlang VM

SchedulerSchedulerSchedulerScheduler

run queuerun queuerun queuerun queue

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 18

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1618

Current SMP VM

Erlang VMErlang VMErlang VMErlang VM

Scheduler #1Scheduler #1Scheduler #1Scheduler #1

Scheduler #2Scheduler #2Scheduler #2Scheduler #2

Scheduler #NScheduler #NScheduler #NScheduler #N

run queuerun queuerun queuerun queue

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 19

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1619

SMP VM in Erlang/OTP R13

Erlang VMErlang VMErlang VMErlang VM

Scheduler #1Scheduler #1Scheduler #1Scheduler #1

Scheduler #2Scheduler #2Scheduler #2Scheduler #2

run queuerun queuerun queuerun queue

Scheduler #2Scheduler #2Scheduler #2Scheduler #2

Scheduler #NScheduler #NScheduler #NScheduler #N

run queuerun queuerun queuerun queue

run queuerun queuerun queuerun queue

migrationmigrationmigrationmigration
logiclogiclogiclogic

migrationmigrationmigrationmigration
logiclogiclogiclogic

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 20

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1620

Some benchmarks

� Speedup of ”Big Bang” on a Tilera Tile64 chip (R13α)
– 1000 processes, all talking to each other

Multiple
run queues

Single
run queue

Speedup: Ca 0.43 * N @ 32 cores

Returning to naturally concurrent patterns, we look at the famous ”Big
Bang” benchmark. This benchmark starts 1000 processes and lets them
all talk to each other. Not very realistic, perhaps, but it does show some
interesting features of the virtual machine. For one thing, this benchmark
is unusual in that it can give better than 100% speedup per core (at least
for a few cores), for various reasons.

In this case, the Big Bang benchmark was run on an experimental Tilera
Tile64 chip. This chip architecture has an on-chip message-passing switch
of sorts, but this is likely of little use to the Erlang VM, since it uses POSIX
threads and shared memory. Even so, we get pretty impressive speedup
up to 32 cores. After that, the program actually runs slower. Closer
analysis indicates that memory allocation locks start becoming a problem
with many cores. The OTP team has a beta version of the emulator using
multiple run queues (one per scheduler thread), rather than a single run
queue from which all schedulers fetch jobs. The performance of multiple
run queues (blue) vs. single run queue (red) is shown in the graph.
Multiple run queues are almost always better, but they also facilitate other
optimizations, such as different structuring of memory in order to reduce
lock contention. This has not been implemented yet.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 21

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1621

Memory allocation locks

...

...

...

Heap

Ets

Binary

alloc() / free()

Memory block carriers
locking

...

Scheduler

The Erlang VM uses ”carriers” in order to reduce memory fragmentation in
long-running systems.

In the current SMP VM, all scheduler threads use the same carriers, and
there’s no way to fix an erlang process to a specific scheduler. This leads
to frequent locking of memory carriers, which becomes the dominating
factor as the number of cores increase (e.g. beyond 32 cores).

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 22

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1622

A really bad benchmark result

� Chameneos Redux
in The Shootout

� Gets worse, the more cores
are added...

� Successful entries:
– C++ (pthread_spinlock)

– Haskell (MVar)

– Java (synchronized +
busy loop wait)

There are other benchmarks that are less flattering to Erlang. One of the
worst known to-date is the ”chameneos_redux” in the Computer Language
Shootout. It is basically centered around rendezvous, and a very poor
match for message-passing concurrency (esp of the granularity that
Erlang supports). One may note that the Scala entry, using much the
same approach as Erlang, timed out...

We note that the best entries use some form of shared-memory mutex
(spinlocks, MVars, etc.) The difference in performance is staggering.

To add insult to injury, the OTP team has observed that this benchmark
runs slower the more cores you throw at it.

On the next slide, we will try to see what is going on.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 23

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1623

Profiling with Percept
R

u
n
n

a
b

le
 p

ro
c
e

s
se

s

� Black areas are mainly
the scheduler working

� Fewer than (cores)
runnable processes
means the idle
schedulers go to sleep.

� Letting the schedulers
”busy-poll” for a while,
doubles performance in
this benchmark

� Percept is part of OTP
– Relies on tracing,

which can be costly

Chameneous_redux on a dual-core

OTP comes with an SMP profiling tool called Percept. It relies on tracing,
and can hard to use in large systems (esp. under some load). Short
snapshots are recommended, since one may otherwise gather so much
data that percept cannot handle it.

In the chart above, we see black areas. These are intervals were no
useful work is done, and the time is taken up entirely by the scheduler. We
can also see that the program causes frequent jumps in the number of
runnable processes. The scheduler threads will be put to sleep by the
Linux kernel if there are no available jobs, and a kernel call is needed to
wake them up again. Therefore, if a program quickly moves beween
having (> cores) runnable processes and having (< cores), some
scheduler threads will constantly go to sleep and wake up, causing
tremendous overhead. Experiments with letting the schedulers busy-poll
for work helps this benchmark a lot, but of course raises total CPU
consumption (something that many of the other benchmarks do as well,
but it’s perhaps not a good thing to always do this.)

For good scalability in SMP Erlang, it is good to always have enough
runnable processes to keep all schedulers busy.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 24

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1624

Improvements in the next release

� Multiple scheduler queues

� Optimized ETS access

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 25

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1625

Possible future improvements

� Shared-heap clusters

� Parallel eval (e.g. similar to F#)

� Fully asynchronous message passing
(EXITs are already fully asynchronous)

� ...

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 26

The $10,000 Question

How do you test and debug
your program on multicore?

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 27

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1627

Current situation

� Absense of shared memory makes writing and
debugging concurrent programs easier than otherwise.

� SMP is in some ways similar to distributed programs
(which, admittedly, is hard).

� Selective msg reception → simpler state machines.

� Erlang has great tracing facilities for debugging
concurrent programs. This helps in SMP also.

� But this is not nearly good enough!

Erlang programmers like to brag about how running on SMP is just like
running on non-SMP. While it is true that Erlang programmers are spared
from some of the nastiest smp-related bugs, debugging an SMP system is
still more difficult than debugging a non-SMP system.

Going from non-SMP to SMP, one will have to contend with true
concurrency and non-determinism. In non-SMP, the scheduler will only let
one process run at a time, so there is no actual parallelism, and the
scheduler is actually very predictable.

Going to a distributed setting introduces a whole set of additional
challenges:

-the communication medium can fail

-message passing is delayed (rather than being instantaneous)

-nodes can fail and reappear, new nodes can be added and nodes can be
removed, in a running system

Compared to this, debugging SMP is relatively easy...

Still, we should remember that the state of debugging is by no means
satisfactory. Some bugs are notoriously difficult to find, and of these,
some get much more likely (and more difficult to debug!) in SMP.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 28

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1628

Hypothesis

� Timing-related bugs are often triggered
only when running large systems

� But this is mainly because timing is different
in large systems, compared to unit test

� If we can control timing aspects in unit test, many
concurrency bugs can be found by running small
examples

Among the very trickiest bugs are timing-related bugs. Typically, a
component may pass unit test, where (hopefully) all the foreseen
combinations of events are tested. Then, when running a larger system,
timing aspects may be altered in ways that were not foreseen, and scary
things happen. The system may become unresponsive, crash, or perhaps
start behaving erratically.

We hypothesize that these bugs can often be found in unit test, if we can
only find a way to play around with timing conditions there. The next
challenge becomes to analyze the error...

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 29

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1629

Introducing QuickCheck

Specify

Inputs
preconditions
postconditions
model of state

Test cases

Simplify
Minimal
counter-example

Generate Execute

Test
outcome

QuickCheck can be described as ”Property-based testing”

•A model is used to describe how to stimulate the component, and how it is supposed to
react.

•QuickCheck then generates random combinations of input and checks the results
against the model.

•If a discrepancy is found, QuickCheck simplifies the input (reducing values, removing
elements, etc.), in order to find a minimal counter-example.

•When testing stateful components, QuickCheck maintains a logical state and selects
input that is valid for each state.

The simplification step is vital, and addresses the problem that random testing normally
generates a lot of noise – it can be very difficult to see which part of the random test data
that actually contributes to the error. Through the simplification process, QuickCheck can
be seen as extracting the ”error signal” from out of the noise.

In fact, to the programmer familiar with QuickCheck’s simplification heuristics, the
minimal counter-example can provide many hints about the likely cause of the error.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 30

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1630

QuickCheck example

prop_lists_delete() ->
?FORALL(I, int(),

?FORALL(List, list(int()),
not lists:member(

I, lists:delete(I,List)))).

1> eqc:quickcheck(example:prop_lists_delete()).
..
Failed! after 42 tests
-8
[5,-13,-8,-8,-9]
Shrinking................(16 times)
-8
[-8,-8]
false

A simple property

Test run

The property above reads as:

”For all I (of type integer), it should hold that
for all List (of type list of integers),
deleting I from the list List
means that I is not a member of List”

Testing the property, QuickCheck quickly finds a counter-example – the
list [5,-13,-8,-8,-9].

It is not immediately obvious why this example fails, but after the
simplification (”shrinking”), we are left with a list of two elements [-8, -8].

We can deduce that the list must have at least two elements (or
QuickCheck would have removed one), with the same value (or
QuickCheck would have reduced one of them further.

Indeed, lists:delete(Value, List) removes only the first occurence of Value,
so if there are more than one in the list, it will not be true that Value is not
a member of the list.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 31

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1631

Case study: proc_reg

� Extended process registry for Erlang*

� Early (2005) prototyped used tricks with ETS to ensure
mutual exclusion without a server process

� An experiment with QuickCheck revealed a bug, but we
couldn’t diagnose it

� So I discarded that code. The gen_server-based
replacement has now been used in the field for 3 years.

� We tried again with a new experimental QuickCheck
(Part of the ProTest EU project)

* Wiger: ”Extended Process Registry for Erlang” ACM SIGPLAN Erlang Workshop 2007

The idea behind the extended process registry (proc_reg) was to capture a common
pattern in our products. We were regularly implementing different mapping functions
between some form of context and the corresponding process(es). A general form of
index seemed useful, one where a process could be associated with any term either
unique or not.

The first proc_reg implementation included an optimization in order to avoid relying on a
central server for all registrations (in line with the philosophy of ”first optimize, then make
it work”). A fairly ambitious test suite ensure that the code worked, after having revealed a
number of strange corner cases due to subtle scheduler behaviour.

When we later needed some small, but still interesting, concurrent program for
experiments with QuickCheck, proc_reg seemed just right. At the time, QuickCheck had
no real facilities for testing concurrent programs, so quite a few contortions were required
– but in the end, QuickCheck was able to find two strange aspects of proc_reg. The first
was that it allowed for registration of dead processes. We considered this a bug until we
discovered that Erlang’s built-in registration functions behaved in the same way! The
other issue was a process crash, which took many hours to understand. We finally
concluded that the optimization in proc_reg still had some race condition, even though we
didn’t fully understand it at the time. While analyzing the problem, we wrote a reference
implementation based on a central registry process. This implementation passed all tests,
so I finally decided to throw away the optimized version and go with the (only slightly
slower) safe version. This software has now been running in commercial products for ca
3 years.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 32

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1632

Short intro to proc_reg

� Key API:
reg(Id, Pid) -> true | badarg()
unreg(Id) -> true | badarg()
where(Id) -> pid() | undefined

proc_reg

P

{{reg,Id}, P}

ets table (ordset)

client process

ets:insert_new(...)

1

cast: {new_reg, Id, P}2

monitor(process, P)
ets:insert(...)

3

{{rev,P,Id},...}

...

server process

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 33

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1633

Proc_reg and QuickCheck

%% Command generator, S is the state
command(S) ->

oneof([{call,?MODULE,spawn,[]}]++
[{call,?MODULE,kill,[elements(S#state.pids)]} || S#state.pids/=[]] ++
[{call,?MODULE,reg,[name(),elements(S#state.pids)]} || S#state.pids/=[]] ++
[{call,?MODULE,unreg,[name()]}] ++
[{call,proc_reg,where,[name()]}]
).

prop_proc_reg() ->
?FORALL(Cmds,commands(?MODULE),

?TRAPEXIT(
begin

{ok,Tabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
{H,S,Res} = run_commands(?MODULE,Cmds),
cleanup(Tabs,Server),
?WHENFAIL(

io:format("History: ~p\nState: ~p\nRes: ~p\n",[H,S,Res]),
Res == ok)

end)).

This property works all the time.

This slide shows some of the QuickCheck specification for proc_reg.

The command(S) function selects a valid command given the current
state. In this case, the command is one of the commands (spawn, kill, reg,
unreg, where). Kill can only be selected if there are registered processes
(and one of these processes will then be selected to be killed). The reg
command can only be selected if there are processes to register.

The prop_proc_reg() function describes a ”property”. It says ”for all runs
of commands, generated using the specification ?MODULE (the current
module), we should (while trapping exits) start proc_reg, run the
commands, and cleanup; and the result of running the commands should
be ’ok’”.

For this to be effective, we also need to check specify what it means for a
command to be successful (next slide).

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 34

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1634

QuickCheck post-conditions

� Surprisingly few

� This is the heart of the
specification

postcondition(S,{call,_,where,[Name]},Res) ->
Res == proplists:get_value(Name,S#state.regs);

postcondition(S,{call,_,unreg,[Name]},Res) ->
case Res of

true ->
unregister_ok(S,Name);

{'EXIT',_} ->
not unregister_ok(S,Name)

end;
postcondition(S,{call,_,reg,[Name,Pid]},Res) ->

case Res of
true ->

register_ok(S,Name,Pid);
{'EXIT',_} ->

not register_ok(S,Name,Pid)
end;

postcondition(_S,{call,_,_,_},_Res) ->
true.

unregister_ok(S,Name) ->
lists:keymember(Name,1,S#state.regs).

register_ok(S,Name,Pid) ->
not lists:keymember(Name,1,S#state.regs).

QuickCheck post-conditions are evaluated for the return value of each
command. A post-condition can be specified for each (command, result,
state) triple, using Erlang pattern-matching. The state in this case is
QuickCheck’s logical representation of what the state of the code under
test should be (the specifications for state transitions is not shown here).

In this case the where command should return the Pid of the process
having registered the name. The unreg command should return true if
there was a live process associated with the name, and exit otherwise.
The reg command should return true if the name is not already taken, and
exit otherwise.

The specification so far doesn’t make use of parallelism, and so, for
proc_reg, it succeeds all the time.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 35

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1635

Parallelizing the property

� QuickCheck tries different ways to parallelize some commands
without violating preconditions

� The property fails if there is no possible interleaving of the
parallel commands that satisfy the postconditions

� Shrinking is not deterministic,
but works surprisingly well...

prop_parallel() ->
?FORALL(PCmdsPCmdsPCmdsPCmds={_,{_ACmds,_BCmds}},parallel2:pcommands(?MODULE)={_,{_ACmds,_BCmds}},parallel2:pcommands(?MODULE)={_,{_ACmds,_BCmds}},parallel2:pcommands(?MODULE)={_,{_ACmds,_BCmds}},parallel2:pcommands(?MODULE),

?ALWAYS(5,?ALWAYS(5,?ALWAYS(5,?ALWAYS(5,
begin

{ok,Tabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
{{{{H,AB,ResH,AB,ResH,AB,ResH,AB,Res} = parallel2:run_pcommands(?MODULE,PCmds),} = parallel2:run_pcommands(?MODULE,PCmds),} = parallel2:run_pcommands(?MODULE,PCmds),} = parallel2:run_pcommands(?MODULE,PCmds),
kill_all_pids({H,ABkill_all_pids({H,ABkill_all_pids({H,ABkill_all_pids({H,AB}),}),}),}),
cleanup(Tabs,Server),
?WHENFAIL(

io:format("Sequential: ~p\nParallel: ~p\nRes: ~p\n",[H,AB,Res]),
Res == ok)

end)).

It turns out that we can take the very same specification and simply
enhance the property a bit to make QuickCheck explore parallelism. This
requires SMP Erlang on a multi-core computer.

The ?ALWAYS(5, Expr) is interesting. Since re-testing the sequence may
result in different timing behaviour, we specify that a command sequence
must succeed 5 times in a row in order to be considered successful.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 36

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1636

Using a custom scheduler

� The code under test must first be instrumented

� The scheduler controls important scheduling events,
and is deterministic

prop_scheduled(Verbose) ->
?FORALL(PCmds={_,{_ACmds,_BCmds}},parallel2:pcommands(?MODULE),
?ALWAYS(5,
?FORALL(Seed,seed(),

begin
L = L = L = L = scheduler:start([{seed,Seed},{verbose,Verbosescheduler:start([{seed,Seed},{verbose,Verbosescheduler:start([{seed,Seed},{verbose,Verbosescheduler:start([{seed,Seed},{verbose,Verbose}],}],}],}],

fun() fun() fun() fun() ---->>>>
{ok,Tabs} = proc_reg_tabs:start_link(),
{ok,Server} = proc_reg:start_link(),
{H,AB,Res} = parallel2:run_pcommands(?MODULE, PCmds),
kill_all_pids({H,AB}),
cleanup(Tabs,Server),
{H,AB,Res}

end),end),end),end),
delete_tables(),
{H,AB={A,B},Res} = proplists:get_value(result,L),
?WHENFAIL(
..., Res == ok)

end))).

There is also a special scheduler designed to work with QuickCheck.
Since it is written in Erlang, the code under test must be instrumented in
order to make use of it. This scheduler uses a pseudo-random sequence
to generate ”interesting” scheduling variations in a fully repeatable fashion.
Since it is deterministic, QuickCheck can simplify the test case.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 37

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1637

Bug # 1

� This violates the specification
– Registering a dead process should always return ’true’

� Absolutely minimal counter-example,
but still hard to understand

� QuickCheck can also output a .dot file...

{[{set,{var,6},{call,proc_reg_eqc,spawn,[]}},
{set,{var,8},{call,proc_reg_eqc,kill,[{var,6}]}}],

{[{set,{var,11},{call,proc_reg_eqc,reg,[a,{var,6}]}}],
[{set,{var,12},{call,proc_reg_eqc,reg,[a,{var,6}]}}]}}

{2829189918,7603131136,617056688}
Sequential: [{{state,[],[],[]},<0.10470.0>},

{{state,[<0.10470.0>],[],[]},ok},
{{state,[<0.10470.0>],[],[<0.10470.0>]},ok}]

Parallel: {[{{call,proc_reg_eqc,reg,[a,<0.10470.0>]},
{'EXIT',{badarg,[{proc_reg,reg,2},

{proc_reg_eqc,reg,2},
{parallel2,run,2},
{parallel2,'-run_pcommands/3-fun-0-',3}]}}}],

[{{call,proc_reg_eqc,reg,[a,<0.10470.0>]},true}]}
Res: no_possible_interleaving

Parallel component

”Sequential prefix”

Running the test with parallelization, QuickCheck will find a counter-
example. It does not always shrink down perfectly, but re-running the test
a few times, we can fairly quickly come up with a nice counter-example:

-spawn a process

-kill the process just spawned

-in parallel, register the (dead) process as ’a’ from two different client
processes

When this is run, occasionally, the reg command will return ’true for one
process, but exit for the other.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 38

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1638

Generated state chart

� QuickCheck-generated
.dot file, visualized with
GraphViz

� We’ll zoom in on the
interesting part

Process link

Message

Process

State

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 39

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1639

State chart detail

� BPid’s registration
succeeds, and it sends a
cast to the admin server

� APid finds that the name
is taken, but by a dead
process – it asks the
server for an audit
(the call)

� But the call reaches the
server before the cast
(”multi-node semantics”)

� The server uses a reverse
lookup (updated when the
cast is received) to find
the name.

� Since the messages
arrived in an unexpected
order, the name remains
after the audit, and APid
fails unexpectedly.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 40

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1640

Bug fix #1

� Insert a dummy reverse mapping immediately

� ets:insert(Objects) is atomic

� The server simply overwrites the dummy entry

do_reg(Id, Pid) ->
Now = erlang:now(),
RegEntry = {Id, Pid, Now},
case ets:insert_new(proc_regets:insert_new(proc_regets:insert_new(proc_regets:insert_new(proc_reg, , , , RegEntryRegEntryRegEntryRegEntry)))) of

false ->
false;

true ->
?gen_server:cast(proc_reg, {new_reg, Id, Pid, Now}),
true

end.
do_reg(Id, Pid) ->

Now = erlang:now(),
RegEntry = {{reg,Id}, Pid, Now},
RevEntry = {{rev,Pid,Id},undefined,undefined},
case ets:insert_new(proc_regets:insert_new(proc_regets:insert_new(proc_regets:insert_new(proc_reg, [, [, [, [RegEntry,RevEntryRegEntry,RevEntryRegEntry,RevEntryRegEntry,RevEntry])])])]) of

false ->
false;

true ->
?gen_server:cast(proc_reg, {new_reg, Id, Pid, Now}),
true

end.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 41

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1641

Bug # 2

� Still problematic to register a dead process!

� Let’s look at the graph...

Shrinking............(12 times)
{[{set,{var,5},{call,proc_reg_eqc,spawn,[]}},

{set,{var,23},{call,proc_reg_eqc,kill,[{var,5}]}},
{set,{var,24},{call,proc_reg_eqc,reg,[b,{var,5}]}}],

{[{set,{var,25},{call,proc_reg_eqc,reg,[b,{var,5}]}}],
[{set,{var,26},{call,proc_reg_eqc,reg,[b,{var,5}]}}]}}

{-9065357021,-6036499020,-6410890974}
Sequential: [{{state,[],[],[]},<0.26845.2>},

{{state,[<0.26845.2>],[],[]},ok},
{{state,[<0.26845.2>],[],[<0.26845.2>]},true},
{{state,[<0.26845.2>],[],[<0.26845.2>]},ok}]

Parallel: {[{{call,proc_reg_eqc,reg,[b,<0.26845.2>]},
{'EXIT',{badarg,[{proc_reg,reg,2},

{proc_reg_eqc,reg,2},
{parallel2,run,2},
{parallel2,'-run_pcommands/3-fun-0-',3}]}}}],

[{{call,proc_reg_eqc,reg,[b,<0.26845.2>]},true}]}
Res: no_possible_interleaving

Parallel component

”Sequential prefix”

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 42

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1642

Chart detail, Bug # 2

� Since the name
is already
registered, both
APid and BPid
request an audit

� Both then
assume that it will
be ok to register,
but one still fails.

� This is ok (valid
race condition),
but not if it’s a
dead process!!!!

First reg

(Ignore this)

Audit req

Audit req

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 43

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1643

Bug fix # 2

� Don’t ever insert a dead process in the registry (duh...)

� After this fix, the code passed 20 000 tests
with the custom scheduler.

do_reg(Id, Pid) ->
Now = erlang:now(),
RegEntry = {{reg,Id}, Pid, Now},
RevEntry = {{rev,Pid,Id},undefined,undefined},
case ets:insert_new(proc_reg, [RegEntry,RevEntry]) of

false ->
false;

true ->
?gen_server:cast(proc_reg, {new_reg, Id, Pid, Now}),
true

end.
do_reg(Id, Pid) ->
case is_process_alive(Pid) of

false ->
where(Id) == undefined;

true ->
Now = erlang:now(),
...

end.

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 44

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1644

But wait...

� What does the specification say about a process dying while it’s
being registered?

� If it were ok to register the same (Name, Pid) twice, it would be
easy (but the register/2 BIF doesn’t allow it...)

� For now, QuickCheck only works with two parallel sequences.

� Alternative approach: Require processes to register themselves!

Pid = spawn(...)

reg(a, Pid) reg(a, Pid) kill(Pid)

The code still has a race condition! (...or?)

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 45

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1645

Single-node vs Multi-node semantics

� Within an Erlang node, message delivery is always
immediate (”single-node semantics”)

� In a distributed system, delivery is asynchronous

� Atomic message delivery is problematic on many-core

� Erlang never did guarantee immediate delivery

� But it’s very easy to make this assumption

Ulf Wiger, Ericsson AB 2009-01-16

ProTest - Property-Based Testing 46

ProTest - Property-Based Testing Ulf Wiger, Ericsson AB 2009-01-1646

Consequence for the Programmer

� SMP Erlang is likely to become
even more asynchronous

� This will increase the risk of
very subtle race conditions

� Hopefully, we can find them in unit test
with tools like QuickCheck

